复杂场景中的运动目标检测方法研究

来源 :中国科学院大学 | 被引量 : 0次 | 上传用户:guocanon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着图像和视频作为最直观的视觉内容和信息承载媒介被普遍采用,如何自动分析与理解海量视觉数据从而充分利用其中有价值的信息,是当前亟待解决的计算机视觉领域的科学问题。其中,运动目标检测是将人们关注的运动目标(前景)从不受关注的场景(背景)中以像素精度提取出来,是视觉信息智能化处理的第一步。同时,运动目标检测也是各种高层视频处理及应用理解(如目标识别与跟踪、行为识别和分析、视频编码、人机交互等)的基础技术,直接影响整个系统的最终性能。  虽然众多研究人员已经在运动目标检测领域进行了多年的科研探索,但是仍然存在许多困难和挑战。首先,运动目标检测需要有效且通用的框架处理复杂的实际场景。当前方法通常基于特定应用场景进行算法设计,针对静态场景和动态场景应用不同的框架结构。而实际的复杂场景往往同时包括静态和动态场景,给运动目标检测带来了挑战。其次,运动目标检测需要高效的特征描述。当前常用的颜色、纹理和边缘等底层视觉特征由于缺乏高层语义先验,无法有效辨别复杂场景中的运动目标并抑制背景噪声的干扰。因此,探索更有效的特征表达至关重要。本文针对复杂场景下的运动目标检测问题,探索视频中像素级的空间连续关系和时序变化模式,提出了两个通用框架:基于像素模型共享的框架和基于深度序列学习的框架。它们能够应对视频中复杂的场景变化,同时处理静态和动态场景建模问题。此外,本文引入具有判别力的神经网络特征,探索高层语义信息和底层视觉特征的有效融合从而得到高效的特征表达。本文主要的研究内容和创新贡献归纳如下:  1.提出一种基于像素模型共享的运动目标检测框架  传统的背景减除法是基于相邻像素在空间上独立的假设,忽略了视频序列中像素间的空间连续性,导致这些方法对背景噪声敏感并且其前景目标内部易出现“空洞”现象。此外,逐个像素建立背景模型会造成模型大量冗余,增加了算法的空间复杂度和时间复杂度。本文提出一种基于模型共享的运动目标检测框架,构建了像素与周围背景模型间多对一的动态匹配模式,即每个像素在共享区域内搜索最佳匹配模型。不同像素在当前时刻可以共用同一个背景模型,下一时刻可自由匹配其他背景模型。本模型共享框架可无缝嵌入各种像素级建立背景模型的传统方法,在混合高斯模型和样本一致性模型上进行了实验和验证,实验结果表明共享策略不仅降低了约三分之二的模型数量,还增强了背景模型中样本的多样性从而增强对背景噪声的鲁棒性,有效提升了运动目标检测的性能。  2.提出一种基于语义敏感的运动目标检测方法。  传统的运动目标检测方法在建立背景模型时通常使用一种或多种底层视觉特征,如颜色特征、纹理特征和边缘特征等。然而这些特征缺乏对人们注意力特点的考虑,难以去除动态背景因素导致的误检,也无法区别视觉特征相似的前景和背景。如果可以提取前景目标和背景场景的更高层次的语义信息,将对运动目标检测任务产生巨大影响。本文探索了在大数据集上,用深度编解码网络进行前背景语义信息学习,并在测试集上离线提取语义特征。然后利用颜色特征与语义特征优势互补,在融合后得到了描述力更强的特征表示。本文提出的方法对视频场景中的恶劣天气、多变的光照条件具有较强的鲁棒性,通过特定场景微调法使之更好地适应新场景。本文提出的运动目标检测框架具备良好的适应性和扩展性,实验表明算法性能相比传统方法得到大幅提升。  3.提出了一种基于像素级深度序列学习网络的运动目标检测方法  由于视频场景变化多、差异大使得像素的空间关系较为复杂,传统方法难于联合视频中的空间关系和时序变化同时为前景和背景建模,因此通常基于视频场景中每个像素的时序变化建立像素级背景模型。本文改变解决问题的思路和角度,将运动目标检测作为一个像素级的序列学习任务,先由语义特征提取网络得到具有分辨力的特征图,再由本文提出的基于注意力的卷积长短期记忆网络联合建模视频序列中的空间关系和时序变化。基于像素级深度序列学习方法本文提出的是一种新颖的端到端通用场景的运动目标检测框架,其提取的高层语义信息具有不受相机运动影响的特性,因此可以应对不同复杂场景的运动目标检测任务。实验证明提出的方法在静态场景和动态场景的数据集上具有良好的性能表现。
其他文献
无线传感器网络(WSN)是由多学科高度交叉融合而形成的前沿性热点研究领域。近年来,无线传感器网络的组网理论和实用技术一直受到研究人员的关注,相关研究成果也不断涌现。网
在计算机视觉测量中,摄像机与外界被测目标的相对位置变动造成摄像机内外参数经常发生变化,最终造成测量偏差。基于径向约束两步法、平面标定法等方法虽可以实现在线摄像机标
随着现代工业生产规模的日益扩大、系统内部不同部分之间相互关联的增加,系统的可靠性、安全性和有效性显得更加重要,一旦发生事故就会造成人员和财产的巨大损失,其后果往往是灾
滚转弹是在飞行过程中绕飞行轴高速旋转的一类弹箭,它能有效的克服气动外形的不对称、质量偏心等引起的落点误差,在国内外弹箭上取得了广泛的应用。捷联惯性系统以数学平台代替
随着工业过程越来越复杂,人们对生产的稳定性、高效性和安全性的要求日益提高,故障诊断方法越来越受到重视。为了更准确、及时的诊断复杂工业过程中的故障,就必须研究更完善的故障诊断理论与方法。本文首先简单介绍了故障诊断技术的发展,阐述了故障诊断的方法及其类型。详细介绍了基于数据的故障诊断方法中的主元分析法(PCA),并分析了其在处理非线性数据时的不足。为了对带有非线性的大规模过程进行更好的故障监控与诊断,
进化算法(EA)已被广泛应用于静态优化问题的求解,并且已经获得大量极为有价值的研究成果。然而现实世界中很多优化问题都是动态、时变的,它们会因为目标函数、环境参数或者约
移动机器人的同时定位与地图创建(Simultaneous Localization and Mapping,SLAM)是一项十分重要的研究内容。主要的研究内容能够包括环境地图的表示、机器人传感器的选择、机
模型管理是商业智能平台(Business Intelligence Platform, BIP)的核心之一,也是商业智能平台研究的重点,同时也是商业智能平台走向实用和成功的关键。本文针对商业智能平台
针对某铸造行业配料车间落后的监测及管理方式带来的生产效率的低下这一问题,研发了一套铸造行业配料车间的嵌入式实时监测系统,取代工人对配料结果的人工手动记录,并且实现对现
人类获取的信息绝大部分来自视觉,视觉是人类认识和改造世界的一个主要途径。虽然传统的二维成像技术已趋向成熟,但它们无法记录和重现出现实物理世界的三维信息。而三维成像技