【摘 要】
:
Polymeric drug-eluting coating is wildly used in clinic. However, the corrosion resistance of bulk-eroding polymer coated magnesium is poor, especially for long-term immersion. This is mainly because
【机 构】
:
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Materials Sc
【出 处】
:
第十一届全国表面工程大会暨第八届全国青年表面工程学术会议
论文部分内容阅读
Polymeric drug-eluting coating is wildly used in clinic. However, the corrosion resistance of bulk-eroding polymer coated magnesium is poor, especially for long-term immersion. This is mainly because the water absorption and acid degradation product of polymers. To address insufficient corrosion control of polymer-coated Magnesium, we applied a hydrophobic stearic acid (SA) thin layer underlying the poly (lactic acid) (PLA) and poly (ε-caprolactone) (PCL) coatings on mg. The SA imbedded polymer-coated Mg showed apparently smaller free corrosion current density than the direct-coated counterparts. More importantly, they exhibited manifestly slower and more stable long-term in vitro immersion degradation than the direct polymer-coated Mg up to 21 days. Moreover, scratch testing disclosed their undercutting corrosion was evidently suppressed. The strengthened corrosion control by the imbedded layer is attributed to its kinetic barrier, hydrophobic nature as well as shielding effect. The SA layer not only block the electrolyte polymer coating absorbed, but also hinder the acid degradation product of polymer coatings to attack substrate.
其他文献
Restenosis and later thrombosis are currently severe problems when using vascular stents. Considerable effort has been made toward developing a bioengineered coating that is effective enough to form r
Carbon nanotubes (CNTs) were demonstrated to be sensitive to many gas molecules with large surface areas and electronic properties. The interaction between Formaldehyde (HCOH) and pristine single-wall
In this work, we successfully synthesized the Ag-rGO composites based on the in situ growth of Ag nanoparticles on the surfaces of the GO sheets through a hydrothermal method. Results showed that high
De-icing potentials (i.e. easy desorption of ice) of superhydrophobic surfaces (SHSs) are of great importance to their practical engineering applications. Recently, icephobicity of SHSs have attracted
A multi-channel real-time sound pressure spectrum analyzer was demonstrated to investigate abnormal noises of tapered roller bearings (TRBs) because of friction and wear or other reasons. The sound se
The study focus on understanding how to govern the fretting wear behaviors under dry lubricated contact to find out the keys to develop new coatings for rubber seal applications. Fretting wear behavio
碳纤维(Carbon Fibers)、碳纳米管(Carbon Nanotubes)、石墨烯(Graphene)等为主的碳纳米材料以其优异的电化学、力学、热学等性能,在航空航天、微电子领域、功能性填料等诸多方面成为了研究热点。陶瓷(Ceramics)材料具有低密、高强、高硬优点,其已在多领域有了广泛的应用。碳纳米/陶瓷复合材料成为了碳纳米材料研究领域中重要的方向,通过碳纳米材料的引入,进一步增加陶瓷
In this study, chick chorioallantoic membrane (CAM) model with abundant blood vessels was developed to investigate the vascularization of porous calcium phosphate. Porous hydroxyapatite ceramic (HA) a
The late thrombosis and restenosis threat seriously to human health after implantation of vascular stent up to now. The integrated endothelial layer, which can maintain the vascular patency and sustai
为获得矿井提升过程中弯曲段提升钢丝绳内部微动疲劳参数,以6×19+IWS钢丝绳为研究对象,依据提升系统动力学,获得绕入和绕出摩擦轮处钢丝绳动张力演化规律,结合提升钢丝绳摩擦传动理论,得到弯曲段钢丝绳动张力沿接触弧长分布规律,将弯曲段钢丝绳离散为多段,每段等效为直线段钢丝绳,进而探究不同弯曲区段提升钢丝绳内部钢丝的动态应力、应变及相对滑移规律,为探究弯曲段提升钢丝绳微动疲劳损伤机理研究提供基础数据。