【摘 要】
:
Aiming at noninvasive,on-demand,and sustained antithrombotic therapy,a new thrombolysis approach based on the transgene system has been developed to remotely and precisely control the expression of ur
【机 构】
:
MOE Key Laboratory of Analytical Science of Food Safety and Biology,College of Chemistry,Fuzhou Univ
论文部分内容阅读
Aiming at noninvasive,on-demand,and sustained antithrombotic therapy,a new thrombolysis approach based on the transgene system has been developed to remotely and precisely control the expression of urokinase plasminogen activator(uPA)by bioengineered cells for antithrombotic therapy both in vitro and in vivo.In this design,the near-infrared(NIR)light could activate the expression of the thermosensitive transient receptor potential vanilloid-1(TRPV1)channel in response to photothermal responsive nanotransducers to trigger the synthetic signaling pathway to secret uPA.By encapsulating bioengineered cells in injectable hydrogel to ensure long-term survival and convenience for injection,the engineered cells could noninvasively and precisely control the production of uPA protein in situ via an NIR laser to significantly enhance the thrombolysis therapeutic effects by spatiotemporally controlling the local temperature,in both the microfluidic blood circulation mimic and the murine tail thrombus model[1-2].
其他文献
光热和光动联合治疗(SPT),在理论上可以表现出“1+1 > 2”的协同效应。[1]然而,由于肿瘤内的微环境缺氧,光动力治疗的效果会受到严重限制,导致光热治疗在协同治疗过程中起主要治疗作用。进而导致传统光动力和光热治疗的联合不能充分发挥协同治疗的效果。因此,需要开发新的联合治疗药物以实现光动力和光热联合治疗的真正协同作用。我们设计合成了一种多功能聚合物PPAIB,并基于MnO2 纳米片构筑了联合光
Recently,the self-assembly of functionalized small molecular photosensitizes(PSs)into “one-for-all” nanoparticles has drawn great attention in phototheranostic cancer treatment because of their high t
生物合成策略是构建肿瘤特异性成像和治疗功能纳米材料的一种前沿合成方法,其基于纳米材料在肿瘤部位原位可控构建引发材料特定的物理化学性质变化(如近红外吸收、纳米粒子尺寸变化等)以提高肿瘤诊疗的精准性[1-3].然而,现阶段在肿瘤细胞原位构建有前景的诊疗纳米材料仍很少有报道.因此,通过与肿瘤微环境的化学反应原理来操纵诊疗纳米材料的生物合成具有重要意义.本研究设计了一种肿瘤微环境响应细胞原位精准合成纳米普
Nature has constructed complicated living systems that often have elaborate hierarchical structure assemblies arising from weakly interacting,yet readily available building blocks.[1] Constructing an
Microfluidic technology has been extensively employed in chemical and biological synthesis in a time-efficient manner.1,2 In this work,we applied a microfluidic chip to the controlled flow synthesis o
活性氧(Reactive Oxygen Species,ROS)是生物有氧新陈代谢过程中的主要产物,包括超氧阴离子自由基(O2-)、单线态氧(1O2))、羟基自由基(·OH)、一氧化氮(NO)、过氧亚硝酸根(ONOO-)等。这类物质具有较强的氧化活性,在许多生理活动中起着至关重要的作用。它们与癌症、机体炎症、脂质的过氧化、DNA 损伤和信号传导等有直接的关系。同时,也参与或影响细胞内的信号转导和基
环氧化酶-2(COX2)mRNA 是诊断、预后、监测结直肠癌(CRC)的重要标志物,[1]目前的检测方法单一,主要为聚合酶链反应(PCR),因此开发一种快速、灵敏的恒温扩增方法在临床应用方面具备非常大优势和重要性.近年来环介导等温扩增(LAMP)作为一种恒温基因扩增技术被广泛应用于细菌、病毒等病原体检测和食品安全检查,然而,LAMP的明显的缺点是容易发生非特异性扩增.[2]我们报道了氧化石墨烯(G
肿瘤微环境响应型试剂在精确诊断和有效治疗癌症方面具有很大的应用前景1.作为第一例具有pH 响应性的有机光热剂,聚苯胺(PANI)被广泛用于癌症的诊断和治疗.一般来讲,在pH<4 的环境下,PANI 的EB 状态才可以转化为ES 状态,使得基于肿瘤微环境pH 响应的PANI 诊疗试剂的开发面临困难和挑战.在本研究工作中,我们通过牛血清蛋白(BSA)的羧基与聚苯胺的亚胺基分子间酸碱反应,得到自组装体B
化学动力学疗法(CDT)是一种新兴的肿瘤治疗策略。然而,肿瘤的催化效率受到Fe(Ⅱ)的严重限制。在此,开发了一种基于EA-Fe @ BSA NPs 通过内源性硫化氢(H2S)加速Fe(Ⅲ)/Fe(Ⅱ)转化和光热协同增强CDT 的策略。一方面,在EA-Fe @ BSA NPs 中具有低催化活性的Fe(Ⅲ)被结肠癌组织中的H2S 迅速还原为高活性Fe(Ⅱ),建立了Fe(Ⅲ)/Fe(Ⅱ)的转化系统,通过
Most siRNAs intracellular delivered by various vectors were damaged by the endosome-lysosome pathway following receptor-mediated endocytosis.