基于微、纳米玻璃双管的离子整流的研究

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:helinjue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目前二极管、三极管等电子整流器件已被广泛应用于电路中,控制电子的流动方向,而用于控制溶液中离子流动方向的离子整流器件相对较少.受生物体内细胞膜表面离子通道(纳米孔)调控细胞膜内外离子浓度行为的启示,研究人员开发出多种多样的锥形纳米孔和纳米通道控制离子的流动方向.Siwy等最先制备出双锥形纳米孔,模拟双极性晶体管的行为,用以控制溶液中离子流动的方向.[1]本论文中,我们利用微、纳米玻璃双管制备了新型离子整流器件,可用于模拟不同种类电子二极管和三极管的行为.微米玻璃双管内部溶液流动的方向主要受电渗流的控制,由于玻璃双管内部和尖端隔断处电渗流大小的差异,使得离子在流动的过程中受到不同的阻力,产生整流现象.调节微米玻璃双管内部溶液的浓度和pH值,离子整流器件将处于不同的“开关”状态,即可实现离子流动方向的控制.纳米玻璃双管内部由于双电层的重叠导致电渗流的影响几乎消失,其在未修饰状态下表现为纯电阻性质.如图1所示,对纳米玻璃双管单侧的管壁进行修饰,即可获得同二极管行为相似的离子整流器件.继续对其另一侧的管壁进行修饰,即可获得同双极性晶体管行为相似的离子整流器件.此外,我们还尝试了其他不同的修饰方法,以及溶液浓度和pH值的改变,获得了多种可用于控制溶液中离子流动方向的离子整流器件.基于微纳米玻璃双管的离子整流器件,制备方便快捷,修饰简单,可模拟多种电子整流器件的功能,具有广泛的应用前景.
其他文献
比色传感器是一种以颜色变化为响应信号,直接用裸眼观察颜色变化就能够达到检测目标物的分析方法.由于该方法不需要借助额外的分析仪器,具有检测信号直观,使用方便,不需要经过专业训练就能够直接使用等优点,近年来引起了广大研究人员的广泛关注.传统的比色方法主要通过对比单一颜色的深浅变化,对目标物进行定性或者半定量分析检测.然而,该方法存在可视化灵敏度不够,颜色定量准确度差等特点.因此研制一种可针对不同浓度的
固态离子选择性电极通常由导电基体、固体接触传导层和离子选择性敏感膜三部分组成。其中,固体接触传导层的存在是为了增强离子选择性敏感膜与导电基体界面间离子-电子传导性和疏水性,进而改善固态离子选择性电极的电位稳定性和重现性[1]。目前已报道的固体接触传导层有导电聚合物、碳基纳米材料、贵金属纳米颗粒等[2,3],这些材料的使用均已明显地提高了固态离子选择性电极的电位稳定性和重现性。然而,这些固体接触传导
活体分析允许人们以非损的方式观察有机体内的生物化学过程,可为生物、医学等相关的生命科学研究提供先进、有效的新方法及新工具.呼出气体检测作为一种了解生理代谢过程和疾病状况的活体分析新方法越来越受到重视[1].然而由于气体样品的高流动性及生物化学过程的动态性,迫切需要发展实时在线的呼出气分析方法以满足现实需要.催化发光(Cataluminescence,CTL)具有分析速度快、灵敏度高、选择性及稳定性
负离子因其所具有的环保与健康效应近年来得到了较大的关注,在相关研究中,基于负离子的基础研究是关键环节,而关于其独特化学性质的深入探索与发现在基于负离子的研究中显得尤为重要。然而传统的分析与检测手段已不能满足研究需求,在这样的背景下,基于负离子的开创性研究成为必要的突破口与新领域开发方向。本文对基于空气与氧气气氛中产生的负离子的化学发光进行了研究,得到了明显的发光现象。通过负高压电晕放电能瞬间在特定
表面等离子体共振(SPR)1 能实时监控和分析在传感芯片表面固定的靶标分子与分析物之间的结合情况,可将芯片表面与靶标分子结合的分析物进行解离-再生回收.将核酸文库流经固定了筛选靶标分子SPR 传感芯片表面,这样能实时观测并记录文库与靶标分子之间的结合情况,而且能够将靶标-适配体复合物与未结合的文库进行分离,然后再将芯片表面与靶标结合的适配体通过仪器再生步骤进行回收2.SPR-SELEX 过程是通过
即时检测(POCT)是在采样现场即刻进行样品分析,其因省去了标本在实验室检验时的复杂处理程序,能快速得到检验结果而受到越来越多的关注。侧向流免疫层析试纸条是一种常用的应用于生物检测的POCT器件。侧向流免疫层析试纸条依靠层析作用进行检测,层析过程时间较长,会产生较高的背景信号,导致灵敏度降低。除此之外,传统试纸条使用胶体金作为标记,通过比色法进行检测,灵敏度和准确度都较低。在本实验中,我们提出了一
生物微阵列芯片以其特有的高通量、微量化及高灵敏度等特点正越来越成为生命科学研究中的重要分析技术.将微阵列芯片通量化检测的优势与微流控芯片微量化样本分离与富集的优势相结合,有望为生物分子富集与检测提供自动化程度及灵敏度更高的分析微系统.在适配体筛选方面,我们建立了基于蛋白质微阵列芯片(Protein Microarray)和微流控芯片(Microfluidic)的适配体筛选方法(PMM-SELEX)
分子生物组学领域的代谢组学中衍生出了呼吸代谢组学——对高挥发性和半挥发性有机化合物(VOCs)谱图的科学研究[1]。在这一层面,对痕量气体的检测将对疾病诊断具有重要意义。研究表明,健康人和病患呼出气中,烷烃、烯烃类及含氧、硫、氮的化合物等指纹性物质的种类和含量存在显著性差异[2]。相对于传统的锁钥结构的单位点气体传感器件,阵列式传感系统在气体识别的通量和准确度上均具无可比拟的优势[3]。此外,石墨
微流控芯片-质谱在线分析方法具有灵敏度高、样品消耗量低、定性能力强等优点,逐渐发展成为一个重要的检测平台。然而,常规的单喷雾尖端微流控芯片存在功能单一,应用范围较窄等缺陷,因而微流控芯片串联质谱的接口技术亟需改进与完善[1-2]。本研究基于聚二甲基硅氧烷(PDMS)设计并制备了一种双喷雾构型微流控芯片,并基于前述的双喷雾构型微流控芯片-质谱的分析平台,探索了一种在线表征酶促反应的分析方法。本方法基
将微电极集成到小型化分析系统中的电化学装置仅需低至几十纳升的样品溶液即可完成电化学检测,但是其制备成本高,操作复杂.目前已发展了应用集成化三电极系统和廉价的电化学池来降低检测所需样品溶液体积的装置.尽管这些装置所需溶液体积达到几十微升,但是其简单、经济和易操作的特点使其更易获得和使用.此论文将介绍的小型化电化学装置可进一步降低检测所需溶液体积并且避免溶液挥发和外界干扰等问题.将碳纤维超微圆盘电极(