Definition Extraction with LSTM Recurrent Neural Networks

来源 :第十五届全国计算语言学学术会议(CCL2016)暨第四届基于自然标注大数据的自然语言处理国际学术研讨会(NLP-NABD | 被引量 : 0次 | 上传用户:weiweilee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Definition extraction is the task to identify definitional sentences automatically from unstructured text.The task can be used in the aspects of ontology generation,relation extraction and question answering.Previous methods use handcraft features generated from the dependency structure of a sentence.During this process,only part of the dependency structure is used to extract features,thus causing information loss.We model definition extraction as a supervised sequence classification task and propose a new way to automatically generate sentence features using a Long Short-Term Memory neural network model.Our method directly learns features from raw sentences and corresponding part-of-speech sequence,which makes full use of the whole sentence.We experiment on the Wikipedia benchmark dataset and obtain 91.2%on F1 score which outperforms the current state-of-the-art methods by 5.8%.We also show the effectiveness of our method in dealing with other languages by testing on a Chinese dataset and obtaining 85.7%on F1 score.
其他文献
  At present,Tibetan information is quickly connected with modernization and information,which results the expansive development of Tibetan information on the
会议
  本文提出一种基于语言现象的文本蕴涵识别方法,该方法建立了一个语言现象识别和整体推理判断的联合分类模型,目的是对两个高度相关的任务进行统一学习,避免管道模型的错误传
  情感分析是自然语言处理领域的重要研究问题。现有方法往往难以克服样本偏置与领域依赖问题,严重制约了情感分析的发展和应用。为此,本文提出了一种基于深度表示学习和高斯
会议
  Traditional approaches to the task of ACE event extraction usually rely on complicated natural language processing(NLP)tools and elaborately designed featur
会议
  In Mongolian language,there is a phenomenon that many words have the same presentation form but represent different words with different codes.Since typists
会议
  Recognizing Textual Entailment(RTE)plays an important role in NLP applications like question answering,information retrieval,etc.Most previous works either
会议
随着深度学习和多模态融合的深入研究,问答系统从传统的纯文本方式扩展到结合图片的视觉问答,成为计算机视觉与自然语言理解的交叉研究热点.Hyeonwoo等最新提出的动态参数预测模型(DPPnet)能够简单、有效地实现问句和图片信息的融合.但是该模型在进行网络参数动态Hash分配时位置随机,缺乏图像内容空间分布的考虑.针对此不足,本文提出一种新的空间离散余弦Hash动态参数网络.算法采用全卷积方式提取保
会议
  For the difficulty of marking Vietnamese dependency tree,this paper proposed the method which combined MST algorithm and improved Nivre algorithm to build V
会议
  As a fundamental step in biomedical information extraction tasks,biomedical named entity recognition remains challenging.In recent years,the neural network
会议
  Chinese semantic dependency graph is extended from semantic dependency tree,which uses directed acyclic graphs to capture richer latent semantics of sentenc
会议