【摘 要】
:
Chinese semantic dependency graph is extended from semantic dependency tree,which uses directed acyclic graphs to capture richer latent semantics of sentenc
【机 构】
:
School of Computer Science and Technology Harbin Institute of Technology,Harbin,China,150001
【出 处】
:
第十五届全国计算语言学学术会议(CCL2016)暨第四届基于自然标注大数据的自然语言处理国际学术研讨会(NLP-NABD
论文部分内容阅读
Chinese semantic dependency graph is extended from semantic dependency tree,which uses directed acyclic graphs to capture richer latent semantics of sentences.In this paper,we propose two approaches for Chinese semantic dependency graph parsing.In the first approach,we build a non-projective transition-based dependency parser with the Swap-based algorithm.Then we use a classifier to add arc candidates generated by rules to the tree,forming a graph.In the second approach,we build a transition-based graph parser directly using a variant of the list-based transition system.For both approaches,neural networks are adopted to represent the parsing states.Both approaches yield significantly better results than the top systems in the SemEval-2016 Task 9: Chinese Semantic Dependency Parsing.
其他文献
统计机器翻译模型,特别是基于句法的翻译模型,其翻译单元在保留足够的翻译信息以及翻译单元在翻译新句子时的泛化能力上始终存在着一个平衡.神经网络被成功用于统计机器翻
At present,Tibetan information is quickly connected with modernization and information,which results the expansive development of Tibetan information on the
本文提出一种基于语言现象的文本蕴涵识别方法,该方法建立了一个语言现象识别和整体推理判断的联合分类模型,目的是对两个高度相关的任务进行统一学习,避免管道模型的错误传
情感分析是自然语言处理领域的重要研究问题。现有方法往往难以克服样本偏置与领域依赖问题,严重制约了情感分析的发展和应用。为此,本文提出了一种基于深度表示学习和高斯
Traditional approaches to the task of ACE event extraction usually rely on complicated natural language processing(NLP)tools and elaborately designed featur
In Mongolian language,there is a phenomenon that many words have the same presentation form but represent different words with different codes.Since typists
Recognizing Textual Entailment(RTE)plays an important role in NLP applications like question answering,information retrieval,etc.Most previous works either
随着深度学习和多模态融合的深入研究,问答系统从传统的纯文本方式扩展到结合图片的视觉问答,成为计算机视觉与自然语言理解的交叉研究热点.Hyeonwoo等最新提出的动态参数预测模型(DPPnet)能够简单、有效地实现问句和图片信息的融合.但是该模型在进行网络参数动态Hash分配时位置随机,缺乏图像内容空间分布的考虑.针对此不足,本文提出一种新的空间离散余弦Hash动态参数网络.算法采用全卷积方式提取保
For the difficulty of marking Vietnamese dependency tree,this paper proposed the method which combined MST algorithm and improved Nivre algorithm to build V
As a fundamental step in biomedical information extraction tasks,biomedical named entity recognition remains challenging.In recent years,the neural network