论文部分内容阅读
单元的密度和质心反映了单元内数据分布特征,利用单元内数据分布特征提出了基于网格相邻关系的多密度聚类算法GAMD。该算法用单元间的相对密度和单元质心距离的相对数来衡量单元间的相似度,并确定边界单元的数据归属,有较高的时间效率。为检验聚类的有效性,提出了拟合度的概念。实验结果表明,该算法能发现任意形状的簇,并能有效地对多密度数据集进行聚类,且聚类结果与数据输入顺序和单元顺序无关。