石墨炔作为空穴收集器构建高效稳定平板钙钛矿太阳能电池

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:ywdsar
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  碳材料由于其优异的电学性能和稳定性在钙钛矿太阳能电池领域展现出巨大的潜力.石墨炔(Graphdiyne,GDY)作为一种新兴的碳同素异形体,与传统碳材料相比,具有均匀分布的孔隙、优异的电学特性以及巨大的设计潜力.本工作在一步合成CH3NH3PbI3钙钛矿薄膜的过程中,使用GDY分散的氯苯溶液作为反溶剂,将GDY纳米片引入到钙钛矿膜层的上部.由于GDY的费米能级高于钙钛矿的费米能级,GDY在空穴的累积和转移中起着至关重要的作用,并且位于钙钛矿膜层上部的GDY实现了薄膜内光生载流子的自动分离.此外,钙钛矿与GDY界面处形成的肖特基势垒确保了空穴从钙钛矿到GDY的单向传输,从而有利于空穴传输层对空穴的进一步提取.GDY表面修饰有效提高了钙钛矿薄膜的光利用率和电荷提取,基于GDY修饰的平板钙钛矿太阳能电池展现出24.21 mA cm-2的短路电流密度(Jsc)和高达19.6%的光电转换效率.GDY修饰的器件在空气环境中放置一个月之后的效率降解小于10%.综上所述,本工作提供了一种利用GDY纳米片来提高钙钛矿太阳能电池电荷提取效率和稳定性的方法.
其他文献
The unique properties of MXenes that arise from terminated functional groups and oxidization of MXenes make them attractive for application in photovoltaic devices like perovskite solar cells (PSCs).H
钙钛矿太阳能电池拥有成本低、工艺简单以及光伏性能优异等优点,作为一种最有发展前景的光伏发电技术之一而受到广泛关注.然而,钙钛矿太阳能电池仍然面临一些挑战,比如长程稳定性、大面积电池器件制备工艺等问题.载流子传输层开发与优化是解决上述问题有效方法之一.二氧化锡(SnO2)纳米材料因其具有较高电子迁移率、较宽带隙、长程化学稳定性和匹配能级等优点而被认为是高效的电子传输材料.针对溶胶凝胶法制备的SnO2
The power conversion efficiency (PCE) of Cs2AgBiBr6-based perovskite solar cells (PSCs) is still low owing to the inherent defects of Cs2AgBiBr6 films.Herein,we demonstrate a carboxy-chlorophyll deriv
有机-无机卤化物钙钛矿由于较高的载流子迁移率,较好的光吸收率,广泛应用于太阳能电池领域[1].SnO2作为一种宽带隙半导体,是一种有前途的ETL材料,但是其与钙钛矿层之间的界面电子复合会降低器件性能.这里,一种简单的掺杂手段被用于修饰SnO2,可以调整SnO2能级的同时提高钙钛矿晶体的结晶度.多金属氧酸盐是一类由过渡金属和氧组成的簇合物,由于其具有充当浅电子陷阱,有效地分离光生激子的特性已经广泛应
High efficiency four-terminal (4-T) tandem solar cells rely on three transparent electrodes with high conductivity and low free carrier absorption in the near-infrared (NIR) region.In this work,a high
与传统结构(n-i-p)钙钛矿电池相比,反型(p-i-n)钙钛矿电池具有制备简单和J-V滞回效应小等优点.采用无机空穴材料代替有机空穴材料是提高反型钙钛矿电池稳定性的一种有效途径[1,2].我们以CuInS2为空穴传输材料,制备了结构为ITO/CuInS2/PCBM/BCP/Ag的钙钛矿太阳能电池.与广泛研究的基于NiO反型结构钙钛矿电池相比,基于CuInS2的钙钛矿电池转换效率接近于基于NiO的
钙钛矿太阳能电池是目前最有希望的第三代光伏电池,最高的光电转换效率已达25.5%[1],但是钙钛矿层在加工过程中极易产生大量的晶体缺陷态,带有大量的电荷,成为电子-空穴的高复合位点[2],极大的限制了电池器件光电转换效率以及稳定性.在这里,我们利用静电纺丝技术制备出PAN纤维,在进行高温碳化以及后处理得到了官能化纳米碳纤维(CNFs-N),用于了调控钙钛矿的生长与结晶[3][4].CNFs-N上的
钙钛矿太阳电池的稳定性至关重要,因为它事关将来钙钛矿电池的商业化,成为钙钛矿电池研究的热点.基于有机空穴传输材料Spiro-OMeTAD的电池转换效率较高,但其稳定性较差,而基于无机空穴传输材料的电池的稳定性较好,但其效率较低[1-3].为了兼顾钙钛矿电池的效率和稳定性,我们将本研究组开发的无机空穴材料CuInS2与有机空穴材料Spiro-OMeTAD相结合形成双空穴层CuIn S2/Spiro-
基于有机胺的低维钙钛矿太阳能电池近年来表现出兼具高效率和高稳定性的潜力[1,2],但钙钛矿薄膜内高的激子束缚能和差的电荷传输限制了器件效率的提升.通过掺杂添加剂来调控晶体面内取向是获得高效钙钛矿太阳能电池的有效手段[3].我们采用丙二胺(PDA)作为准二维钙钛矿中的有机胺大分子,制备了PDAMA4Pb5I16的钙钛矿薄膜.通过掺杂少量的1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)到钙钛矿前驱
The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic p