【摘 要】
:
本文以Th(NO3)4和NH3·H2O为钍溶胶原料,石墨粉为碳源,PVA为粘结剂,采用溶胶-凝胶技术结合高温碳热还原法来制备碳化钍陶瓷燃料核芯.研究了温度及钍浓度等工艺条件对钍溶胶性质的影响,优化了石墨粉的分散工艺,制备了碳化钍陶瓷核芯.通过不同反应条件下制备钍溶胶并进行性质表征,发现氨水的用量(n(NH4+)/n(NO3-))、温度以及钍浓度对溶胶的粘度、浊度、胶粒粒度等有着很大的影响。温度过高
【机 构】
:
中国科学院上海应用物理研究所,上海,201800 中国科学院上海应用物理研究所,上海,201800
【出 处】
:
第四届全国核化学与放射化学青年学术研讨会
论文部分内容阅读
本文以Th(NO3)4和NH3·H2O为钍溶胶原料,石墨粉为碳源,PVA为粘结剂,采用溶胶-凝胶技术结合高温碳热还原法来制备碳化钍陶瓷燃料核芯.研究了温度及钍浓度等工艺条件对钍溶胶性质的影响,优化了石墨粉的分散工艺,制备了碳化钍陶瓷核芯.
通过不同反应条件下制备钍溶胶并进行性质表征,发现氨水的用量(n(NH4+)/n(NO3-))、温度以及钍浓度对溶胶的粘度、浊度、胶粒粒度等有着很大的影响。温度过高和n(NH4+)/n(NO3-)值过大都无法得到稳定的钍溶胶。在凝胶球制备过程中,采用有机试剂预分散可明显提高石墨粉在钍溶胶中分散的均匀性,缩短石墨粉分散所需时间。随着石墨粉粒径的增大,干燥后的含碳氧化钍凝胶球的球形度降低,表面形貌粗糙度增大。得到的凝胶球经过200℃干燥3h、600℃焙烧3h后,在1900℃的真空炉内烧结30min,可获得无裂纹,球形度良好、致密的碳化钍陶瓷燃料核芯。碳化钍易水解,当其暴露在空气中6小时后,经水解作用转化为ThO2。
其他文献
铀的吸附分离是缓解铀污染问题的有效途径.有序介孔炭具有有序的通道、均一的介孔尺寸和高比表面积等特性,在铀的吸附分离方面具有一定的潜力.但目前而言,有序介孔炭的功能化方法比较单一,限制了其吸附分离性能.并且,现有的功能化方法大部分涉及高温、腐蚀性试剂等苛刻的条件,使其实际应用存在较多困难.已有研究表明,生物分泌的多巴胺在温和的条件下即可自聚并能够沉积到大部分材料的表面.由于富含胺基和羟基等功能基团,
铀的吸附分离是从自然界提取铀元素以及缓解铀污染问题的重要途径.核径迹膜(TMs)是一种具有特殊结构的直孔超滤膜,其具有大小均匀的圆柱状孔道结构,在吸附分离领域具有广阔的应用前景.金属有机框架材料(MOFs)是一种由有机配体和金属离子通过自组装形成的具有重复网络结构的多孔材料,其具有高的比表面积和丰富的活性基团,在铀的吸附分离方面具有一定的潜力.单纯的MOFs是微米级的晶体,过小的尺寸限制了其直接应
熔盐电化学法利用被分离元素阳离子还原电位差异进行分离,是目前研究得最为广泛也是相对安全的一种乏燃料干法后处理技术.在熔盐堆燃料盐的后处理中,其主要成分FLiBe熔盐是一种良好的电解质,进行燃料盐中UF4的电解分离在热力学上可行,而电解过程中U4+的电化学行为和电极过程是确定该方法是否可实用化的必要条件.本研究着重开展了此方面研究,得到以下结论:1)在FLiBe熔盐体系中,U4+在金属(钨、钼、镍等
熔盐电精制是最具应用前景的乏燃料干法后处理技术,目前的熔盐电精制过程中大都采用贵金属、铁、碳棒等作为电解池电极.但这些固体电极都因直接接触高温熔盐而易腐、易沾污、难于更换.在大气压环境下,如果将一个通以氩气的空心金属管悬垂在熔盐体系上方,在强电压下会产生常压空心等离子体放电现象,使电源、电极、熔盐体系等构成了电精制回路,从而实现熔盐中目标离子的电精制还原.本研究工作旨在验证熔盐体系中等离子体电极应
二酰胺类配体作为分离镧系和锕系离子的萃取剂而受到关注,而这类配体与镧/锕系离子所形成配合物离子的结构、性质和化学反应规律对其在分离过程中的行为有着重要的影响.气相镧系配合物离子由于溶剂分子、伴阴离子等环境因素得到了有效的控制,它们的化学行为更能体现出镧系元素内在性质的影响.本文利用质谱方法研究了Ln3+/UO22+与N,N,N,N-四甲基戊二酰胺(L1)、N,N,N,N-四甲基-3-硫杂戊二酰胺(
中国科学院上海应用物理研究所承担了中科院核能先导专项"钍基熔盐堆核能系统(TMSR)"的研究任务.钍基熔盐堆核能系统首要的科学目标是实现钍资源的利用和可持续的钍铀燃料循环,采用7LiF-BeF2熔盐作为反应堆的燃料载体和冷却剂.针对堆内燃料盐进行周期性的处理——提取核燃料和载体盐循环复用、分离去除裂变产物,不但可提升反应堆运行的经济性,而且是实现钍铀燃料循环的基本保证.氟化挥发和熔盐减压蒸馏技术作
随着第四代核能反应堆的发展,干法后处理技术受到越来越多的关注.干法后处理技术是在高温、无水状态下处理辐照核燃料的化学工艺过程,可用于常规压水堆的乏燃料后处理,也适用于金属燃料、氮化物燃料、石墨球燃料、氧化物燃料及熔融盐燃料等多种形态的乏燃料处理,可以作为今后快堆乏燃料尤其是金属燃料的后处理、熔盐堆燃料的处理以及超铀元素嬗变燃料处理为目的的分离技术.氟化挥发方法是干法后处理的重要技术之一,其分离纯化
为了验证高温水解技术在TMSR干法尾料后处理流程中的可行性,开展了一系列氟化物的高温水解实验研究.前期的研究结果发现ThF4、UF4可以在较低温度下转化为其相应的氧化物,而作为重要裂变产物的稀土氟化物则较难水解,水解温度高且水解机理较为复杂.故重点研究稀土氟化物的水解行为,希望为钍基熔盐堆乏燃料后处理提供基础理论依据.本实验探究了SmF3为代表的中子毒物在湿润气体中的水解行为和反应机理。通过XRD
钍基熔盐堆(TMSR)核能系统项目是中国科学院首批启动实施的战略性先导科技专项之一,致力于解决钍铀燃料循环和钍基熔盐堆相关重大技术挑战,实现改进的开环模式下的钍铀燃料循环或完全闭式的钍铀燃料循环.在钍铀燃料循环过程和一回路系统中会产生放射性有机废液,主要有废溶剂萃取剂(TBP\正十二烷)、废润滑油和废真空泵油等.由于放射性有机废液具有易燃性,常规处理方法是焚烧法,由于焚烧过程的温度较高,容易造成一
近年来,核燃料后处理高放废液中的裂变产物钯,因其丰富的含量和较低的辐照水平而逐渐引起研究者的关注.然而,目前裂变产物钯的分离也面临着高酸、强辐照和多种核素干扰的问题.为此,论文提供了一种新型的具有核壳结构的磁固相吸附剂,以实现对高放废液模拟料液中钯的选择性分离.首先,通过溶剂热法制备了超顺磁的四氧化三铁纳米颗粒;再利用溶胶-凝胶法,在四氧化三铁外包覆二氧化硅保护壳层;通过硅烷偶联剂的水解作用,在二