Molecular-like Ag clusters and Ag nanocrystal enhanced down-conversion and up-conversion luminescenc

来源 :第八届中国功能玻璃学术研讨会暨新型光电子材料国际论坛 | 被引量 : 0次 | 上传用户:eric900300
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  In this research,we reported the molecular-like Ag(ML-Ag)clusters and Eu3+ co-sensitized efficient broadband down-conversion luminescence in oxyfluoride glass,and the Ag nanocrystal enhanced up-conversion luminescence in the Er3+-yb3+codoped tellurite glass powder,respectively.The AgNO3/EuF3/YbF3 tri-doped oxyfluoride glass was prepared by a melting-quenching method,in which a high-efficient broadband down-conversion can be realized due to the simultaneous energy transfer processes of Eu3+→Yb3+,ML-Ag clusters→Yb3+,and ML-Ag clusters→Eu3+→Yb3+.The spectral measurements indicated that besides the F-center brought by the fluorides,the formation of the ML-Ag clusters and the evolution of silver species within the glass matrix were also closely related to the introduction of Eu3+ and Yb3+ ions.As the UV-visible irradiation in the wavelength region of 250-600 nm can be efficiently converted into near-infrared emission around 1000 nm in the AgNO3/EuF3/YbF3 tri-doped glass,which thus has promising application in enhancing the photovoltaic conversion efficiency of the silicon solar cell.By using the field-assisted diffusion method,the glass substrate containing Ag nanocrystals was prepared,and then the contribution of the obtained glass substrate after positive and reverse diffusion treatment on the up-conversion properties of the Er3+-yb3+codopedtellurite glass powder was investigated.The experimental results indicated that the reverse electric field-assisted diffusion process can greatly improve the up-conversion emission intensity.
其他文献
大豆作为世界上重要的经济和粮食作物,在我国已有五千年的栽培历史。而大豆育成品种在生产实践中发挥了重要作用,是重要的种质资源。从1923到2005年,我国共育成了1300个大豆
甲醇制芳烃(MTA)是增产芳烃、缓解芳烃生产对石油的过度依赖以及解决甲醇产能过剩的重要途径。本论文旨在揭示分子筛催化剂的孔道结构、反应活性中心、酸性以及拓扑结构对其M
会议
木聚糖酶在造纸、饲料、食品以及能源等领域的应用价值已经得到了肯定,但由于纸浆处理通常是在高温条件下进行,在饲料制粒加工中也需要短暂的高温处理,很多天然的木聚糖酶热