【摘 要】
:
1988 年,Kennedy 等首先实现了由BCl3 共引发的苯乙烯(St )及其衍生物活性正离子聚合,但所得到聚合产物的分子量分布宽(Mw/Mn=5~6 )。对于TiCl4 共引发的St 活性正离子聚合,引发剂为2,4,4-三甲基-2-氯戊烷(TMPCl )和1-苯基氯乙烷(1-PhEtCl ),并需要加入一定量的2,6-二叔丁基吡啶(DtBP )、N,N-二甲基乙酰胺(DMA )、六甲基磷酰胺
【机 构】
:
北京化工大学 可控聚合反应科学与技术基础教育部重点实验室 北京 100029
【出 处】
:
2005年全国高分子学术论文报告会
论文部分内容阅读
1988 年,Kennedy 等首先实现了由BCl3 共引发的苯乙烯(St )及其衍生物活性正离子聚合,但所得到聚合产物的分子量分布宽(Mw/Mn=5~6 )。对于TiCl4 共引发的St 活性正离子聚合,引发剂为2,4,4-三甲基-2-氯戊烷(TMPCl )和1-苯基氯乙烷(1-PhEtCl ),并需要加入一定量的2,6-二叔丁基吡啶(DtBP )、N,N-二甲基乙酰胺(DMA )、六甲基磷酰胺(HMPA )、丁醚(Bu2O )等亲核试剂或盐n-Bu4NX ,才能实现活性聚合,分子量分布相对较窄(Mw/Mn=1.6 ~1.8 )。水可以作为引发剂来引发苯乙烯进行正离子聚合,但产生不可控引发,得到聚合物的GPC 谱图呈双峰分布(Mw/Mn =2.3 ~4.3 )。本研究组曾采用H2O/TiCl4/给电子体(ED )体系引发异丁烯(IB )控制正离子聚合,得到较窄分子量分布的聚合产物(Mw/Mn =1.18 ~1.21 ),本文研究对比Py 、MPy 和DMPy 对H2O/TiCl4 体系引发St 控制正离子聚合反应的调节作用及其机理与聚合反应动力学行为。
其他文献
由于水性聚氨酯分子链中含有亲水性基团,所以其耐水性并不理想。而有机硅的改性能大大的提高涂膜的耐水性能,有机硅单体是一类结构特殊的单体,它的分子中既含有有机基团,又含有无机硅原子,所以常用它作为有机、无机介质的偶联剂,如将它用在涂料中则能大大提高涂膜对无机基材的粘附性;另外,由于有机硅中含有大量的有机基团,所以它具有比较低的表面能,在涂膜中,它趋向于向表面富集,这就赋予这些经过改性的涂料涂膜优良性能
乙烯和α-烯烃共聚可以合成线性低密度聚乙烯(LLDPE),LLDPE 综合了低密度聚乙烯和高密度聚乙烯的许多优点,广泛地应用于薄膜、管材等各个领域,在许多领域中逐渐替代了LDPE 。以非均相Ziegler-Natta 催化剂催化合成这些聚合物时,长链α-烯烃竞聚率很低,共单体插入量很难提高。而且用Ziegler-Natta 催化剂催化乙烯/α-烯烃共聚时,Ti 4+可能被助催化剂烷基铝还原成Ti
催化聚合合成聚苯乙烯的催化剂主要有前过渡金属钛络合物[1],后过渡镍金属络合物[2],以及稀土络合物催化剂[3],Sun 等用中性的镍催化剂[Ni(C ≡CPh)2(PBu3)2]和钯催化剂[Pd(C ≡CPh)2(PBu3)2]催化苯乙烯聚合得到富含间规结构的无规聚苯乙烯[4]。之后,Sun 等又用离子型的镍催化剂(η -1-R-Ind)Ni(PPh3)Cl催化苯乙烯聚合,同样得到了过富含间规结
多嵌段聚合物传统上主要是利用多步活性聚合的方法来制备。可逆加成-裂解链转移(RAFT)作为活性自由基聚合是制备嵌段共聚物的重要方法之一。文献[1,2]报道了利用线形双硫酯和三硫酯来控制聚合反应。本文通过相转移剂的方法合成了一种新型的环状三硫代碳酸酯:4,7-二苯基-1,3-二硫代-2-环硫酮,将其作为RAFT试剂用于苯乙烯的聚合,得到了新型的多嵌段结构的聚合物(PS)n。
近年来,通过对茂金属催化剂的深入研究发现:调整桥联基团、配体上取代基、中心原子可以改善聚合物性能,从而达到分子剪裁的目的。故自九十年代中期,Royo, Brintzinger, Weiss, Bercaw 等人合成出了双二甲基硅桥茂金属催化剂,并用于催化乙烯丙烯聚合后,此催化剂以其大的碳骨架张力,在催化烯烃聚合上显示出了特殊的性能而备受关注。随后合成了一系列的双二甲基锗桥、双二甲基硅氧、双亚甲基桥
本文探讨了新型铁系催化体系,Fe(acac)3-Al(R)3-HOP(OR)2 ,催化下的双烯烃聚合行为。研究表明:氢化亚磷酸酯(HOP(OR)2 )对提高催化体系对丁二烯和异戊二烯的聚合活性有至关重要的作用,氢化亚磷酸酯作为催化体系的第三组分使其用于双烯烃聚合具有潜在的工业意义。以丁二烯为单体聚合,依聚合条件可得到高1,2-结构含量的间规和无规两种产物,既高乙烯基聚丁二烯橡胶和间同1,2-聚丁二
在过去的十年中,后过渡金属催化剂在烯烃聚合的研究中呈现蓬勃发展的趋势。一个主要原因就是与前过渡金属相比,后过渡金属配合物具有较低的亲氧性和对杂原子的高忍耐性。1995 年,Brookhart 的基于α -二亚胺配体的阳离子Ni,Pd配合物发现,是后过渡金属烯烃聚合催化剂研究的一个重大突破。尽管α -二亚胺配体的Pd 配合物-MAO 体系对乙烯均聚呈现极高活性,然而,由于它是阳离子活性中心,这使得极
近10 余年来,以ATRP 、NMP 、RAFT 聚合为代表的可控/活性自由基聚合受到广泛关注。活性自由基聚合综合了活性聚合和自由基聚合的优点,克服了各自的缺点,已成为大分子合成的一种重要方法1 、2 。迄今,人们已基本探明了RAFT聚合反应的机理,但关于RAFT 过程中中间态自由基的断裂速率常数量级,以及是否存在中间态自由基与增长种自由基间的交叉终止反应还存在较大争议3-5 。另一方面,RAFT
(甲基)丙烯酸酯类单体分子中存在β碳、羰基碳两个亲核点,采用有机锂(主要为烷基锂)引发剂进攻羰基碳会使链终止,在聚合过程中表现为各种副反应[1]。而过渡金属铜(I)的有机化合物亲核性较弱,它与有机锂形成的双金属体系与碳碳双键反应为主,并能引发甲基丙烯酸酯类单体进行聚合。已有报道所采用的有引发有机铜锂化合物引发甲基丙烯酸酯类单体聚合显示,聚合物分子量分布宽,没有活性聚合的特征,且不能引发非极性单体的
20 世纪80 年代中期,Beach 和Kissin [1-2]等人首先采用乙烯二聚催化剂和Ziegler-Natta 催化剂催化乙烯原位共聚制备支化聚乙烯。2001 年Quijada[3-4]和胡友良[5]几乎同时报道了{[(2-ArN=C(Me))2C5H3N]FeCl2}(Ar=2-C6H4(Et))和EtInd2ZrCl2 复配催化乙烯原位共聚制备支化聚乙烯。本文采用2种不同结构的铁系亚胺