Rapid Prototyping of Microfluidic Devices Using Micromilled Wax as Masters

来源 :中国化学会第十二届全国微全分析系统学术会议、第七届全国微纳尺度生物分离分析学术会议、第七届国际微流控学学术论坛 | 被引量 : 0次 | 上传用户:LOVE85954709
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Simple and rapid prototyping of microfluidic devices is highly desirable for fundamental academic research,which allows researchers to focus on device application instead of fabrication [1].Although soft lithography based on poly(dimethylsiloxane)(PDMS)has enabled the rapid prototyping of numerous types of microfluidic devices,it still subject to some limitations such as the requirement of expensive "clean rooms" and photolithographic equipment,and time-consuming master fabrication process.To rapidly and cheaply prototype microfluidic devices at research laboratories,we developed a cost-effective and simple method to fabricate PDMS-based microfluidic devices by combining wax micromilling with replica moulding technology.The basic fabrication process is described in Figure 1,which consists of four main steps:(ⅰ)fabrication of a wax-based female mold using micromilling,(ⅱ)reduction of surface roughness of the micromilled channels using gas-blowing-assisted PDMS coating,(ⅲ)fabrication of an epoxy-based male mold using polymer casting,and(iv)fabrication of the PDMS-based microfluidic device using soft lithography.The geometry and quality of the master molds and the PDMS microfluidic channels are characterized using SEM and optical microscopy.This method provides the widest range of feature capabilities with the least added process complexity.Particularly,this method is capable of making complex three-dimensional(3D)features that may be impractical or unfeasible with other methods.This is demonstrated by the microchannels such as stepped depth,graded depth,semicircular cross-section,and trapezoid cross-section channels showed in Figure 2.To demonstrate the feasibility of the proposed microfabrication technique,a microfluidic droplet generator was fabricated and tested [2].Monodispersed droplets were successfully generated in the as-fabricated droplet generator(Figure 3).This approach offers an easy,flexible and rapid prototyping of microfluidic and lab-on-a-chip devices to users without expertise in microfabrication.In addition,micromilling can also be used to fabricate multi-level microfluidic structures during the same milling procedure simply by typing the parameters into the control system,which allows combining more functions and applications into the microfluidic device for integrating microfluidic system.
其他文献
由于兼具分离能力强和灵敏度高的优势,毛细管电泳-激光诱导荧光(CE-LIF)联用技术已发展成为复杂样品中痕量物质分析的一种有力工具[1]。此前,本实验室以445 nm蓝光激光二极管为光源搭建了一套共聚焦LIF 检测器,并构建了完整的CE-LIF 分析系统,在此基础上发展了胶束电动色谱方法用于姜黄素类化合物的灵敏分析[2]。
运用电化学生物传感器直接、快速、超灵敏检测全尿或全血样品中的疾病标志物成为当前传感器研究邻域的一大新挑战。本研究,利用氮掺杂石墨烯修饰的电极在2-甲基咪唑溶液和Zn(NO3)2 溶液中交替沉积,最终可以制得比表面积明显增大,导电性和结构进一步优化的类沸石咪唑酯金属有机骨架-氮掺杂石墨烯复合材料(ZIF-8@N-Gr),并对复合纳米材料进行了表征。
Protein cleavage,or digestion,usually is one of the most important but tedious process in the field of protein analytical chemistry.It involves solution denaturation and enzyme digestion of protein sa
惯性微流控芯片技术因可以连续有效的处理实验进程,无需施加任何耗能的外力场即能完成流体或粒子操控等具有独特的优势。然而这些技术仍然存在诸多缺点,例如鞘液流的高度消耗性、操作程序的高度繁琐性以及芯片制备的高度复杂性等。
采用电化学技术可将聚苯胺薄膜的氧化还原态在还原态、中间态和氧化态三态间进行可逆调控,同时伴随着聚合物共轭结构的改变和离子脱嵌、电子得失。
随着微流控芯片技术的不断发展,其分析对象(如单细胞)往往是含有多种生物分子的复杂体系,并且它们的吸光和荧光特性各异。如何准确测定这些生物分子的种类和含量,是一个亟待解决的问题。
微观尺度下限域电化学表界面的原位动态分析是了解电化学过程的重要途径。目前,针对电化学界面的高表面灵敏度、高时空分辨率分析手段的建立仍是一个充满挑战的研究领域。
INTRODUCTION Fatty acids(FAs)are the most fundamental lipid class in living organisms and play critical roles in the formation of cell membranes,energy storage and cell-to-cell signaling.
During the past decades,graphene oxide(GO)-based adsorbents have attracted much attention in dye contaminant due to their excellent adsorption performance.In this work,superlastic adsorbent sponges we
INTRODUCTION Chemicals are added to maintain and improve water quality in water treatment infrastructures such as building water,factory cooling water,bathing water.