论文部分内容阅读
声带小结和声带囊肿作为喉部疾病中较为常见且临床症状相似的两种病症,如完全依靠医师的临床经验判断,误诊率较大。文章采用声学检测的方法,提出了一种基于决策树改进的随机森林识别算法对声带小结和声带囊肿进行识别研究。首先对声带小结和声带囊肿各参数进行相关性分析,得到各组参数的Pearson系数用以判断参数的相关性大小,进行声学参数的优化,随后采用随机森林方法进行识别研究。实验数据来源于苏州大学病理嗓音数据库。研究表明,该方法适用于声带小结和声带囊肿的识别,且最终达到81%的识别率。