论文部分内容阅读
针对间歇过程的非线性操作特性,提出一种非线性的多向独立成分分析(MICA)方法-基于特征样本的多向核独立成分分析(FS-MKICA)。该方法首先把正常工况下的间歇过程三维数据展开成二维,对输入的二维训练样本集进行特征样本提取,然后利用核函数完成从非线性特征样本输入空间到线性高维空间的转换,在变换后的线性高维空间中用独立成分分析(ICA)法提取独立成分构建模型。FS-MKICA不仅提取了过程的非线性特性,且避免了直接对全体输入样本建模,降低了计算复杂性。将FS-MKICA用于监视青霉素发酵过程,仿真结