论文部分内容阅读
By developing the recursive Green function method, the transport properties through a quantum wire embedding a finite-length saw-tooth superlattice are studied in the presence of magnetic field. The effects of magnetic modulation and the geometric structures of the superlattice on transmission coefficient are discussed. It is shown that resonant electron gas. The transmission spectrum can be tailored to match requirements through adjusting the size of saw-tooth quantum dot and field strength.