论文部分内容阅读
人工蜂群算法是近年来提出的一种受生物行为启发的优化算法,该算法主要通过模拟蜜蜂的觅食来实现问题的求解。作为一种全局优化算法,人工蜂群算法有着较好的探寻能力,但其探索能力相对较弱。针对人工蜂群算法收敛速度缓慢的问题,提出基于scout蜂交叉觅食的改进人工蜂群算法。该算法通过交叉策略来指导scout蜂的觅食行为,避免了随机觅食带来的算法收敛速度缓慢的问题,提高算法的收敛速度。通过五个基准测试函数进行对比实验,结果表明新算法无论是在收敛速度、解的质量方面都优于标准人工蜂群算法,是一种有效的优化算法。