【摘 要】
:
针对现有模糊C均值(FCM)聚类算法存在的对初始参数敏感、迭代速度慢,以及对噪声鲁棒性差等问题,提出将蚁群优化算法(ACO)与直觉模糊聚类相结合的方法用于分割脑部MR图像。该算法采用自适应蚁群优化算法获取初始聚类中心与聚类个数作为直觉模糊聚类的初始值,将融入了局部空间信息和犹豫度的直觉模糊聚类算法应用于含噪声脑部图像及脑肿瘤图像进行分割。实验结果表明该算法能够有效抑制噪声干扰且保存图像细节,相较于
【机 构】
:
山东理工大学计算机科学与技术学院 山东淄博255000
论文部分内容阅读
针对现有模糊C均值(FCM)聚类算法存在的对初始参数敏感、迭代速度慢,以及对噪声鲁棒性差等问题,提出将蚁群优化算法(ACO)与直觉模糊聚类相结合的方法用于分割脑部MR图像。该算法采用自适应蚁群优化算法获取初始聚类中心与聚类个数作为直觉模糊聚类的初始值,将融入了局部空间信息和犹豫度的直觉模糊聚类算法应用于含噪声脑部图像及脑肿瘤图像进行分割。实验结果表明该算法能够有效抑制噪声干扰且保存图像细节,相较于FCM及相关改进算法具有更高的分割精度和分割效率。
其他文献
使用仿射变换网络对遥感图像进行空间变换,批量生成训练图像,将特征提取和匹配放在卷积神经网络的端到端架构中,直接预测仿射变换参数;通过采用校正网络对卷积神经网络的结果进行改进,实现遥感图像更加精确的配准。通过与SIFT算法、SURF算法和其他深度学习方法相比,该方法对遥感图像配准的速度和精度均有显著提升。
针对电影彩色化面临着上色质量和时序稳定性的双重挑战,提出一种带有循环结构的生成对抗网络,可用于电影的自动彩色化,不需要任何参考帧和人工干预。该网络基于经典的条件生成对抗网络:生成器用于生成彩色图像,完成彩色化任务;鉴别器用于鉴别真伪,提升生成器性能。引入循环结构和时序一致性损失,用于整合时序信息,解决上色的稳定性问题。实验结果表明,该方法在保证单帧图像上色的同时,可以有效减少生成的电影序列中的闪烁
提出一种基于快速无偏分层图抽样的MapReduce负载平衡方法。将聚类算法融合到MapReduce连接操作中,提出MapReduce并行聚类连接算法的实现方法;根据聚类结果动态调整抽样率的无偏分层图抽样算法,从而实现连接操作目标数据的准确、平衡抽样。通过合成数据集和真实数据集下的数据处理实验,与Hash连接算法及基于NS抽样的聚类算法进行对比,验证了所提出的算法方案在不同数据倾斜程度下都具有良好的
信息物理融合系统(Cyber-Physical systems, CPS)是由信息系统和物理系统融合而成,从而引入了信息系统中普遍存在的安全隐患。传统信息系统的入侵检测算法专注于检测的准确率而忽略算法的复杂度和实时性,不适用于CPS。为了解决CPS入侵检测的实时性问题,提出一种结合相关性特征选择的堆叠极限树集成算法(CFS-SET)。针对CPS中数据特征众多的特点,使用基于相关性的特征选择算法(C
为了更加准确地揭示恶意程序在异质传感网络中的传播规律,考虑异质传感器节点的移动性,基于扩展经典传染病理论而提出具有不同恶意程序潜伏期的延迟HSEIRD(Heterogeneous Susceptible-Exposed-Infected-Recovered-Dead)模型。计算得出该模型的稳定点,并使用下一代矩阵算法,得到该模型的基本再生数。进行数值模拟,以验证不同恶意程序潜伏期和自由移出率对异质
提出一种基于KL散度的结构化剪枝方法,用KL散度来衡量通道之间的差异性,并定义通道的重要因子,通过删减重要因子较小的通道来进行结构化剪枝。在CIFAR-10和CIFAR-100数据集上,对ResNet进行结构化剪枝,并对比几种较为先进的硬剪枝方法,发现KL散度能发掘出卷积层中的冗余通道,剪枝后精度可能不会下降太多,在减少10%~30%网络参数与浮点运算的情况下,甚至比原始网络准确率要高0.4到0.
基于深度学习的图像超分辨率重建算法不能很好地处理现实生活中有多种复杂噪声干扰的低分辨率图片,提出一种双向的生成对抗网络,引入下采样网络及重建网络联合学习的方法。下采样网络模拟生成现实生活中有复杂噪声及受运动干扰的低分辨率图片,重建网络将模拟生成的低分辨率图片恢复为细节清晰的高分辨率图片。实验结果表明,该算法能够重建出视觉效果良好的超分辨率图像,在Set5、DIV2K等通用测试集上,其客观评价指标(
为了获得利益,在线评论当中有很多伪造的评论,酒店领域的评论也不例外。由于酒店领域的评论只有少部分的标注数据,这给深度学习技术的应用带来了困难。提出一种融合酒店消费领域的专业知识和基于文本卷积神经网络的方法。该方法对数据进行增强,用无监督学习方法获得aspect情感信息,利用卷积神经网络识别虚假评论。实验结果表明,该方法的识别效果比传统方法有显著的提升。
针对云计算在运算过程中资源利用率低以及节点负载不均衡的问题,提出一种改进狮群优化算法的云计算资源调度策略。针对传统狮群算法易早熟收敛陷入局部最优以及算法收敛精度低的问题,通过余弦扰动因子以及双高斯变异函数对算法进行改进。数值仿真实验结果表明,改进后的狮群优化算法较好地平衡了算法的全局勘探能力和局部开发能力,提高了算法的全局收敛精度。建立云计算资源调度数学模型,并通过改进后的狮群算法对模型进行优化。
2017年党的十九大报告指出“中国特色社会主义进入了新时代”,中国经济由高速增长正式转向高质量发展阶段。毋庸置疑的是,深入落实创新驱动发展战略是实现中国经济高质量发展的根本保障。而中国当下面临的现实是,科技发展水平总体不高,科技对经济增长贡献率与发达国家还存在较大差距,国家创新能力不强已经成为中国经济社会发展的“阿喀琉斯之踵”。从区域层面上看,增强区域创新能力是提升国家创新能力和建设创新型国家的必由之路。金融作为现代经济的核心,在改善资源配置效率、降低交易成本、防范和化解风险等方面具有重要作用。技术创新活