论文部分内容阅读
针对深度图像中的人体目标跟踪问题,提出一种基于深度图像的改进Camshift算法。利用人体目标的深度信息计算概率分布,结合人体形态学特征,对深度的概率分布赋予不同的权重,通过Camshift算法进行迭代,从而寻找目标,使用卡尔曼滤波器在三维空间中对运动人体目标的位置实现预测和更新。采集1200帧图像进行测试,结果表明,该算法能实时准确地跟踪深度图像中的运动人体目标,有效克服遮挡等干扰,单人和双人跟踪准确率均在95%以上,高于传统Camshift算法。