论文部分内容阅读
《中学数学教学参考》编辑部举办的首届中学生数学智能通讯赛中高二年级试题第18题为 :若x ,y∈R ,x+y =1,则xx2 +y3+yx3+y2 ≤ 83 . ( 1)(从该刊 2 0 0 4年第 5期 p .5 9提供的解答来看 ,条件“x ,y ∈R”应为“x ,y ∈R+ ”)类比之 ,容易证得命题 1 若x ,y ,∈R ,x+y =1,则x
The 18th high school second grade mathematics test questions organized by the editorial department of the “Middle School Mathematics Teaching Reference” is: If x, y∈R, x+y =1, then xx2 +y3+yx3+y2 ≤ 83 ( 1) (According to the answer provided by p.59 in the 4th issue of the journal, 2004, the condition “x, y ∈ R” should be analogous to “x, y ∈ R+”), and it is easy to prove proposition 1 If x,y,∈R,x+y =1, then x