论文部分内容阅读
针对复杂样本的模式分类问题,提出了有效的因子分析法(FA)、遗传算法(GA)和BP神经网络(BPNN)相结合的FAGABPNN分类方法,基本思想是:首先利用因子分析法对输入样本降维,然后利用遗传算法和BP神经网络相结合的方法对系统进行建模.仿真结果表明,该系统为给复杂样本的分类提供了一条有效的途径.