启停阶段干气密封界面微结构的摩擦热力学研究

来源 :润滑与密封 | 被引量 : 0次 | 上传用户:wshzzfdc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以动环端面带微米级双向螺旋槽与圆弧槽结构的干气密封为研究对象,考虑密封界面热传导建立不同微结构密封副干摩擦工况下的热力学模型,采用完全热力耦合方法进行摩擦传热分析.研究结果表明:动环端面微结构的存在,使接触面局部产生高温热点,热点区域主要集中于开槽区域周围,高温热点沿周向周期性分布,双向螺旋槽界面热点较集中;动静环接触面最高温度随转速的增大、运行时间的延长上升趋势越明显;微槽深度对界面最高温度的影响在起始阶段不明显,随着滑动过程的进行,浅槽界面最高温度逐渐高于深槽界面;相同转速、槽深情况下,圆弧槽界面温升低于双向螺旋槽界面;碳石墨静环接触面等效应力分布情况与高温热点区域具有相似性,接触面局部温差产生的热应力是导致应力集中的主要因素.
其他文献
垫片密封泄漏预测模型一般基于Hagen-Poiseuille定律.该定律适用于气体或液体的单组分泄漏预测,而对于双组分或多组分介质的泄漏,其适用性有待进一步研究.在考虑泄漏通道亲疏水特性的基础上,采用格子玻尔兹曼方法(LBM)模拟矩形微通道内的双组分渗流过程,获得不同密度的双组分介质在毛细管内流动的基本规律.研究发现,通道的亲水和疏水特性对双组分渗流的影响显著,具体表现为黏滞在亲水性壁面上的重组分使流动通道的截面积缩小,从而使轻组分的流量下降.研究表明,双组分在亲水性壁面通道内的流动不同于一般的双组分混合
为提高空气静压轴承工作的稳定性,设计一种环形多孔节流空气静压轴承,建立其物理模型,并采用大涡模拟方法对轴承节流孔出口处附近计算区域的气膜流场进行分析.结果表明:空气静压轴承气膜压力在节流孔的出口附近气膜间隙上出现分离,但在远离节流孔的出口气膜压力曲线是重合的;节流孔数为9时轴承节流孔出口处的最大压降幅度为节流孔数为1时的26%左右,最大速度突升幅度为节流孔数为1时的43%左右,表明增加节流孔的孔数可以显著减小节流孔的出口附近压力的突降、速度的突升,提高轴承工作稳定性;在空气静压轴承工作过程中,节流孔出口处
以螺旋槽动静压气体轴承气膜为研究对象,基于计算流体力学与六自由度耦合方法,模拟支撑气膜的流动以及刚体转子的运动,通过分析轴心轨迹及其频谱特征,研究定子轴线偏移、倾斜、定子尺寸误差以及粗糙度等加工及装配特征对动静压气体轴承运动状态的影响规律.结果表明:装配误差对轴承稳定性影响较大,当转速达到30000 r/min,定子轴线偏移误差以及定子轴线倾斜误差分别达到2μm以及2°时,转子振幅明显增加,轴承运动状态均为极限环运动,处于临界稳定状态,因此为保证气体轴承运动稳定性,应确保气体轴承的轴线装配精度;而在轴承对
选取地铁刚性接触网中现役的浸金属碳滑板与铜银合金接触线为接触副,模拟地铁弓网的实际运行状况,在环-块式试验机上研究直流电流为200~400 A、法向载荷为15~40 N、滑动速度为40~120 km/h工况下浸金属碳滑板载流摩擦磨损性能.结果表明:摩擦因数随电流和滑动速度的增大而减小,随法向载荷的增大而增大;磨损量随电流和滑动速度的增大而增大,当电流较小时(如200 A),磨损量和法向载荷之间存在一个阈值,当电流较大时(如400 A),磨损量随法向载荷的增大而减小;滑板温度随电流的增大而增大,随法向载荷增
随着流体动压润滑向纳米尺度发展,离子双电层对润滑性能的影响不能忽视.考虑到润滑过程中摩擦副相对速度是可变的,提出一种考虑离子动态输运特性与流场及电场耦合的离子双电层润滑模型,分析摩擦副相对运动速度和Zeta电势差对润滑膜的影响.分析结果表明:摩擦副相对运动造成了电势不均衡分布,平衡电势偏向于运动壁面Zeta电势,且相对速度的增大加剧了不均衡性;Zeta电势差对润滑液体承载能力影响显著,当Zeta电势差从0开始增大时,双电层电黏度效应及润滑液体承载能力先增大后减小.提出的模型实现了速度可变的双电层润滑瞬态仿
研究O形密封圈在偏心情况下采用二维模型计算接触应力结果的准确度.通过利用有限元分析软件ABAQUS对O形圈的偏心情况进行二维和三维数值仿真分析,针对不同O形圈直径在不同偏心量的情况下分别进行接触应力的二维和三维计算与对比.结果表明:在O形密封圈偏心的情况下,与三维模型相比,二维模型计算的接触应力在最大压缩量处往往偏大,在最小压缩量处往往偏小,且偏心量的增大和O形圈直径的减小均导致二维模型的计算误差增大.对二维模型接触应力计算误差随偏心量和O形圈直径的变化曲线分别进行拟合,得到二维模型接触应力计算误差的预测
针对在线铁谱视频图像气泡高干扰所面临的磨粒分割困难问题,提出一种气泡高干扰在线铁谱视频图像的磨粒快速分割算法。首先运用运动检测的方法确定视频中气泡的位置,并用相邻帧相同位置的图像信息对气泡区域进行处理,再使用双边滤波对处理后的图像进行平滑去噪,实现气泡干扰的初步抑制;最后基于抑制气泡图像的灰度直方图,对每一帧图像选取其自适应的阈值,实现在线铁谱视频图像中磨粒的快速分割。该研究为在线铁谱的磨粒分割与
为实现磷化铟高质量表面的绿色加工,使用动态磁场集群磁流变抛光对单晶磷化铟进行正交抛光实验,研究各工艺参数(抛光盘转速、工件转速、磁极转速和偏摆速度)对抛光速率及抛光表面粗糙度的影响.利用回归分析法建立反映材料去除率及表面粗糙度与抛光工艺参数关系的回归方程.结果显示:在抛光工艺参数中,工件转速对材料去除率影响最大,偏摆速度影响最小;对表面粗糙度影响最大的是抛光盘转速,磁极转速影响最小;在优化工艺参数(抛光盘转速40 r/min、工件转速500 r/min、磁极转速30 r/min、偏摆速度200 mm/mi
建立UMIST型(带轴向接地屏蔽电极)和METC型(带轴向驱动屏蔽电极)油气润滑ECT传感器的三维物理模型,根据三维物理模型推导电容值和灵敏度数学表达式,并分析轴向屏蔽电极对传感器的敏感性和灵敏度均匀性的影响;采用线性反投影算法(Linear Back Projection,LBP)进行图像重建,并比较重建图像与真实图像的相对误差和相关系数.结果表明:2种轴向屏蔽电极均可消除边缘电容并提高传感器的敏感性;带轴向接地屏蔽电极使得传感器的灵敏度更加均匀,而带轴向驱动屏蔽电极的传感器则相反.带轴向接地屏蔽电极的
水润滑轴承在工作中存在表面粗糙峰接触等摩擦问题,而合理的长径比可以改善轴承润滑状态.以重载水润滑轴承为研究对象,建立水润滑轴承混合润滑热模型,通过有限差分法计算求解,研究长径比对重载水润滑轴承性能的影响.结果表明:在相同载荷条件下,增大长径比可增强水膜承载力、提高最小膜厚进而改善轴承润滑状态,可使轴承压力分布均匀、削弱应力集中效应从而提高轴承使用寿命;低速时增大长径比可降低摩擦因数,但高速时摩擦因数随长径比的增大而增大;增大长径比还可降低轴承温度,但不利于水流的轴向端泄排出.