论文部分内容阅读
气体传感器阵列是电子鼻系统的重要组成部分,传感器阵列的交叉敏特性严重影响电子鼻对气体识别的准确率.将快速独立分量分析算法和BP网络相结合用于电子鼻的模式识别可以有效地改善这一问题.并由一个5个传感器组成的电子鼻系统,对10组不同体积分数的3种气体测量得到的30组数据样本进行仿真.结果表明,用快速独立分量分析对数据作预处理,可以简化计算,减少数据之间的相关性,将预处理后的数据样本作为BP网络的输入,使网络结构简化,收敛速度快.利用该方法可以提高电子鼻识别气体的准确率.