论文部分内容阅读
提出了基于固有模态函数奇异值分解和支持向量机的虹膜识别方法.用一维经验模式分解对按行展开的虹膜数据进行分解,将得到的若干个IMF形成初始矩阵,然后对该矩阵进行奇异值分解,提取其奇异值作为虹膜特征向量输入支持向量机进行分类识别.与传统的Gabor小波特征提取方法比较,本文方法解决了滤波器参数繁杂问题且在编码长度和时间方面有明显的改进.试验结果表明,本文方法能有效地应用于身份鉴别系统中.