人工智能的石器时代

来源 :财经 | 被引量 : 0次 | 上传用户:voyage36
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目前弱人工智能的最好写照是:一边是天才、一边是弱智的“雨人”式智能
  人工智能,是2017年最热的科技话题。从今年5月Google的人工智能系统AlphaGo以3比0战胜世界围棋第一人柯洁,到7月份Facebook的CEO马克·扎克伯格(Mark Zuckerberg)和特斯拉的CEO埃隆·马斯克(Elon Musk)为人工智能隔空论战。最后埃隆·马斯克直指马克·扎克伯格对人工智能知之甚少。
  那么,人工智能真的可以具有类人的智能吗?今年5月底,《麻省理工技术评论》(MIT Technology Review)发表的人工智能发展前瞻时间表给了这样的回答:除了战胜人类围棋高手的目标已经达到外,语言翻译(2024年),撰写高校论文(2026年),驾驶卡车(2027年)乃至撰写纽约时报排行榜畅销书(2049年)和完成外科手术(2053年)都赫然在列。
  最近几个月,有关人工智能的终极警告见诸媒体:如“霍金警告:人工智能可能让人类灭绝”,“保安机器人‘自杀’ 人工智能对人类来说是福是祸”,“细思恐极!两个人工智能系统用人类无法理解的语言进行了交流”等,那么,人工智能技术真的已经在人类可控的边缘吗?
  答案是否定的:目前我们掌握的人工智能技术还非常粗糙和原始。如果把人工智能和人类使用工具的历史相比,我们目前还处在人工智能的“石器时代”。

弱人工智能阶段进行中


  目前业界公认的人工智能发展分为三个阶段,即弱人工智能(Artificial Narrow Intelligence,ANI)、强人工智能(Artificial General Intelligence,AGI)和超人工智能(Artificial Super Intelligence,ASI)。但每个阶段的定义稍有不同。
  所谓弱人工智能,就是像目前的各种对话机器人如Siri,还有围棋系统AlphaGo和IBM的认知系统 Watson。它们需要依赖于海量数据,并在设计者精心构建的环境下进行模型训练,最终对给定目标基于明确任務展现强大的计算和认知能力。目前人类出现的所有人工智能系统都在此阶段,无一例外。
  所谓强人工智能,目前业界没有统一的定义。但总的来说强人工智能应该不再局限于单一的明确目标,它应该能够自主进行非结构化数据的学习,并完成通用的任务。训练过程不再局限于格式化的数据输入,而是可以像训练猫、狗一样进行模糊训练。
  我认为,人工智能系统应该达到高级哺乳动物甚至人类婴儿的智力水平,这才谈得上强人工智能系统,这就包括了类似于批判性的分析问题和抽象的思考能力。
  


  显而易见,目前无论是谷歌、亚马逊还是别的互联网创新企业,他们研究的人工智能项目与此都还相去甚远。
  超级人工智能目前是意见分歧最大的阶段。但总的来说,作为发展的最高阶段,人工智能系统应该已经适用阿西莫夫的机器人三定律,即:机器人不得伤害人类,或因不作为使人类受到伤害;除非违背第一定律,机器人必须服从人类的命令;除非违背第一及第二定律,机器人必须保护自己。
  所以,超级人工智能应该具有自我的认知能力,它将以我们目前无法理解的方式来构建和运行。同时,作为目前已知的智能和认知领域的唯一杰作——大脑,在超级人工智能到来时,大脑本身的工作方式和针对其的人工模拟技术一定已经实现。很难想象人类会创造一种新的和大脑工作机理完全不同的人工智能系统。
  我认为更大的可能性是人类基于对大脑构造的深刻认识和全面仿真基础上构建出真正的超级人工智能系统。

弱人工智能弱在哪?


  根据这样的阶段划分,我们就知道目前所有的已经应用和还在研究的人工智能技术无一例外都是弱人工智能,其核心能力和大多数人所理解的智能相去甚远。
  那么我们看看,现有的人工智能技术究竟弱在哪里?
  其一,目前的弱人工智能必须精确学习,指定输入。人类智能来自于学习,而人类的学习过程往往是模糊学习,正误混杂。对于目前的人工智能系统,学习的过程其实是通过输入已知数据完成对模型的调整(通常被称为训练模型)。任何错误的已知数据都会导致模型偏离最终的理想结果。在没有人工干预的前提下,模型本身没有任何过滤错误数据影响的能力。
  微软公司在去年推出了一款名为“Tay”的人工智能系统,其设计能够模仿一名19岁的美国少女与Twitter用户在线聊天,微软希望Tay能够通过与人类对话进行自我学习并不断完善,从而更好地与人类交流。但是在Tay上线之后仅仅16小时,Tay开始频繁爆出粗口,其中不乏种族歧视、侮辱女性以及污秽不堪的词句,最终微软不得不将其紧急下线。
  微软的Tay人工智能系统发生与预想结果重大偏离的核心原因就是现有的弱人工智能技术无法面对模糊学习和错误信息的挑战。
  有关弱人工智能的指定输入有这样一个实例:主人设定扫地机器人iRobot每天凌晨1点半自动启动清理房间,这样起床后就能享受到干净的室内空间。但当某天晚上他的宠物狗把大便拉在了地板上。第二天早上主人看到宠物狗的大便均匀地抹平在iRobot走过的每一个房间角落。
  对于扫地机器人这种弱人工智能设备,传感器采集的都是预设好数据,任何模型之外的因素如宠物狗的大便,都是视而不见的。
  对于精确学习、指定输入的弱人工智能,任何超范围的输入和训练数据集中的噪声数据对于其都可能带来一场灾难。
  其二,目前的弱人工智能是单一能力的“雨人”式智能。美国电影《雨人》描写了一个患有自闭症、生活几乎无法自理的人同时拥有超强的记忆力,甚至可以利用自己的超强能力到赌场赢钱。这种一边是天才、一边是弱智的“雨人”式智能,就是对于目前弱人工智能的最好写照。   从人工智能技术出现到现在,所有已知的人工智能系统都在追求给定场景下、特定业务问题的解决。所以,从数据收集、模型选择、模型训练到实际应用,目前的人工智能系统都是设计解决单一任务的。
  以Google的AlphaGo为例,它除了会下围棋,其他什么都不会。哪怕是需要解决类似的问题如下国际象棋,整个系统包括算法就都需要重构。
  类似的情况同样存在于绝大部分现有的人工智能系统中。比如对于自动驾驶系统,它的任务就是根据各个传感器的动态输入决定对于方向盘、油门和刹车等系统的操控。如果我们需要开发一个非轮式的行走机器人,那么原有自动驾驶系统积累下来的“知识”全无用处,从输入数据到核心算法全部都要推倒重构。
  对于具有“雨人”式智能的这种单一功用人工智能系统,其实更应该称其为人工智能辅助系统,因为几乎没有任何应用场景的弹性,其实和公众心目中认知的人工智能天差地别。
  其三,神经网络算法离“类脑计算”还非常遥远。“类脑计算”,指的是以大脑相似的方式工作,并完成相应的计算工作。
  神经网络是目前人工智能领域最热的算法,没有之一。仅从神经网络的名字就容易联想到人脑,人脑不就是由亿万个神经元细胞构成的神经网络吗?通过神经网络构造的系统是不是可以完成“类脑计算”,拥有类似人脑这样的高级智能呢?
  再加上Google的AlphaGo系统就是使用卷积神经网络和相关的深度学习技术构建核心算法,最終超越了所有人类目前能够达到的围棋水平,不由得更容易让公众以为神经网络和“类脑计算”有什么关系。
  其实神经网络只是人工智能算法的一种,并且也不是占压倒性优势的算法。目前的神经网络与人类大脑的区别,比算盘和超级计算机的区别更大。主流神经网络算法包含的单向信息流动和输入输出节点模式,更是对大脑神经元工作方式的拙劣模仿。人类目前对大脑的核心工作原理几乎是一无所知,所以神经网络和大脑相比只是形似而已。
  如果有一天人类破解了大脑的核心工作原理,是非常有可能创造出类似大脑的强人工智能甚至超人工智能系统的。当然,人类也有可能创造出不同于大脑工作机制的全新人工智能系统。但在我看来,摆着现成的智能实物(大脑)抄都抄不会的话,凭空创造一个人工智能体系的难度就更大了。
  除了神经网络以外,目前主流的人工智能算法还包括回归、聚类、决策树、随机森林等。KDnuggets统计,数据科学家们常用的算法包括10种。
  所以把目前的人工智能和神经网络甚至与“类脑计算”相提并论,是公众认识的误区。
  笔者从1998年就开始接触数据科学,目前仍然任职某500强企业的高级数据科学家。我的看法是,目前人工智能领域并没有真正越阶的突破。
  近几年人工智能特别火爆的根源一方面是通过一些创新的技术如深度学习等,让模型在训练过程中能够快速逼近,从而支持海量的数据训练任务并大大缩减模型训练时间,最终在特定场景下能够匹敌甚至超越人的智力水平。
  此外也是因为云计算向模型提供强大的训练算力,并为人工智能带来开放与广泛应用的平台。
  但目前人工智能所采用的各种模型算法如神经网络、随机森林、贝叶斯分类和支持向量机等,都是十几年甚至几十年前就已经出现的,并不是新鲜事物。现有的模型算法如果没有越阶的突破,从弱人工智能到强人工智能的阶段式跨越是不太可能发生的。
  目前,网上流传的各种关于人工智能的惊悚话题都是以讹传讹的夸大之词。试想,目前基于单一任务的弱人工智能系统,怎么可能会产生系统的自我意识,就更谈不上“自杀”、“交流”这样带有主观认知的行为了。传感器故障或者是模型训练失败导致的错误输出,才有可能是这些“惊悚事件”发生的最大根源。
  人们往往高估某一事件或趋势的短期影响,而低估其长期效果,对于人工智能也是这样。
  人们在最近十年捡起人工智能这一“石块”并开始打磨作为智能工具,未来一定会逐步进入智能的青铜时代、黑铁时代乃至蒸汽时代。但有限的模型和相应的弱人工智能决定了人类还处在人工智能的“石器时代”。
  (作者为科技与互联网资深分析师,编辑:谢丽容)
其他文献
(《财经》2017年第21期“养老坐在‘风口’上,可钱、地、医都难解决”)  在近年100多条政策的驱动下,养老产业似乎即将成为一个炙手可热的“风口”,但囿于建设用地、回报周期等诸多因素,至今没有一家公司成功主导了市场,也鲜有成功的盈利模式问世。  不过,事情或许在向好的路上发展,比如房地产信托投资基金和商业房地产抵押贷款支持证券为养老项目提供了更多融资渠道,并且房產库存也能为养老项目提供机会,更
期刊
各地GDP成绩单出炉,21个省市超全国水平。过去20多年一直提结构调整,不过一旦外部形势好转,结构转型调整就往往后拖。因此,最关键的不是经济增速,而是彻底推进改革,打破体制机制障碍  近日,全国各省市陆续发布2017年上半年GDP“成绩单”,西藏GDP增长10.8%,位列第一;重庆和贵州实现了两位数GDP增速,分列二三;31个省市中有21个跑赢“国家线”。  重庆GDP增速连续十季领跑全国。山西经
期刊
中国商飞能否成为波音空客之后世界航空制造业的第三极,目前并没有答案  国产大飞机C919三个半月前首飞成功,举国欢腾,但少有人问:波音空客性能优良的大飞机完全可以满足全球市场需求,为何中国还要不惜代价造自己的大飞机?  这首先是因为大飞机本身就商业价值巨大,和C919同型的单通道波音737和空客A320一架就1亿美元,其次是大飞机能拉动漫长的产业链,带来数以万亿计的产业链价值。  C919已经起飞
期刊
(《财经》2017年第21期“对局‘无现金’”)  無现金时代由来已久,发迹于信用卡时代。到了本世纪,智能手机的出现让无现金时代出现了新的变革——二维码的出现。搭上了互联网的快车,中国互联网公司在无现金时代异军突起,成为新的标准制定者。  李显龙近日访华期间开玩笑说,在中国出门“不怕口袋没钱,只怕手机没电”,很明显,中国已经是一个无现金社会。支付宝、微信支付在中国一二线城市畅行无阻,但是随着支付体
期刊
(《财经》2017年第21期“挣扎:伊梅尔特执掌通用电气16年”)  在这个互联网公司疯狂扩张与并购的年代,工业巨头已走到了“做减法”的时候,重新聚焦核心工业业务,并发力数字化。过去的多元化扩张让GE、艾默生等一批的传统巨头失去了专注力,而霍尼韦尔这样聚焦核心业务的公司获得更快地发展。市场相信,对于传统的工业巨头来说,简洁的业务结构能使他们更为专注,深耕自己的核心业务领域才能够在工业领域持续领跑。
期刊
政府、商业机构采集了大量公民个人信息,由此建立了庞大的数据库,但个人信息保护尚未形成分层次、结构化的法律体系,这是个人信息权遇到的主要障碍  近日,媒体报道在百度网盘可以看到大量私人信息,百度网盘虽不自带搜索功能,但通过第三方网盘搜索引擎可查询到百度网盘用户的大量照片、通讯录,甚至政府、高校及公司内部文件等隐私内容。网友惊呼又“被裸奔”。  日光之下无新事。当互联网催生的大数据经济进一步发展时,网
期刊
由“链”到“网”,数字化供应链的运营模式已变。这一本质变化,给企业带来了诸多机遇,然而要抓住这些机遇并非易事  供应链变革,正成为企业转型的重中之重。以电子及高科技行业为例,随着全球化的迅速扩张和数字化技术的高速演进,顶级电子产品每年都面临着高达15%的大幅折价;电子产品的更新迭代导致了相应库存资产的快速折旧,以及产品生命周期可缩短至六个月;同时,大规模定制的兴起也对该行业的供应链提出了更高的要求
期刊
金融科技正让银行成为一部高速运转的“永动机”,随时随地解决用户的任何金融服务需求  在银行传统金融业务面临愈加激烈竞争的同时,作为银行主要收入来源的公司业务受金融脱媒、利差收窄、企业信用风险增加等影响,银行的净收入在逐年下降,零售业务转而成为了银行收入增长的主要动力。银行业在消费金融领域发挥自己所长的同时,借助大数据、人工智能等新技术,在消费金融市场逐渐摸索出一片自己的发展空间。  在越来越多银行
期刊
要推动科技成果转化,需要确立科学家的主体地位,在经费使用等方面给他们更大空间,同时明确知识产权权益规则,给予科学家们合法、足额的激励  过去一年多的时间里,国务院至少发布了五份文件,力图推动科研经费管理改革和科技成果转化。  最近的一份,是7月27日发布的《关于强化实施创新驱动发展战略,进一步推进大众创业万众创新深入发展的意见》。  但在同一时间段里,关于科研人员在科研及成果转化中涉嫌犯罪的指控和
期刊
提高能量密度,降低成本仍然是电池技术的发展趋势,变局之中,二三线企业将被淘汰  2017年,被不少动力电池业内人士视作产业洗牌的一年。  9月8日,工信部副部长辛国斌在天津召开的中国汽车产业发展论坛上表示,一些国家已经启动了停止生产传统能源汽车的时间表,工信部也已经启动了相关研究,也将会同相关部门制定我国的时间表。2016年11月23日,广东省东莞市,位于京港澳高速广深高速东莞厚街暇务区内的电动汽
期刊