论文部分内容阅读
随着互联网的普及和网络连接设备与访问方式的多样化,网络入侵方式与手段日趋多样化且变异速度快,传统入侵检测方法在有效性、自适应性和实时性方面难以应对日益复杂网络环境的安全监控要求,为此提出一种基于在线自适应极限学习机(online adaption extreme learning machine, OAELM)选择性学习的网络入侵检测方法(SEoOAELM-NID).首先,提出一种能自动设定最优隐含节点个数且具有在线增量学习功能的OAELM构建方法,采用Bagging策略快速训练出多个具有一定独立性的OA