论文部分内容阅读
强化学习是一种重要的机器学习方法,然而在实际应用中,收敛速度缓慢是其主要不足之一。为了提高强化学习的效率,提出了一种并行强化学习算法。多个同时学习,在各自学习一定周期后,利用D—S证据利用对学习结果进行融合,然后在融合结果的基础上,各进行下一周期的学习,从而实现提高整个系统学习效率的目的。实验结果表明了该方法的可行性和有效性。