论文部分内容阅读
针对流域水文和污染物迁移转化过程模型受限于模型初始条件、边界条件、数值分辨率、参数敏感等及现有的深度学习模型对污染物通量时间序列数据解析缺少物理机制的问题,提出了基于长短时记忆神经网络(LSTM)的流域污染物通量预测模型。借助深度学习框架Keras,构建了多变量时间序列预测模型。选择气象数据作为流域产汇污过程的驱动因子、前期降雨量作为表征流域土壤干湿程度的指标,基于以上指标在不同降雨强度、月份、水文期的污染物通量的差异性分析,确定了模型的输入端特征;使用基于LSTM的时间模拟器识别了历史数据间的固有特征及