论文部分内容阅读
推荐系统中的用户隐私保护问题是当前的一个研究热点。以推荐系统服务器不可信为前提,提出了一种基于代换加密的隐私保护协同过滤算法。用户在客户端对评分信息进行代换加密并提交给推荐服务器,服务器则根据收集的评分密文信息进行协同过滤推荐。提出了一种无语义条件下的用户模式相似度计算方法,用以在隐私保护协同过滤中确定每个用户的近邻,进而对用户的评分密文进行预测。实验结果验证了该方法相对于传统协同过滤推荐算法的优越性。