论文部分内容阅读
许多实际问题,尤其是矩阵特征值,微分方程问题的求解往往归结为特征方程--一元n次方程根的求解问题,而现有的大部分方法的特点是给求一个实(或复)根的方法,逐步分解多项式,重复使用相应方法来获得每一个根,商-差法,Graeffe's^[1]法虽然可在无重根情况下求得所有根,但商一差法收敛速度慢,Graeffe's法难以实现,本文利用方程根与系数关系,给出一种无重根条件下求一元n次方程根所有根的二阶收敛失代方法,该法与商-差法等其它方法结合不仅可解决初始近似值的选择,同时可使收敛速度大大加快。