论文部分内容阅读
当前先进的图像检索方法中,存在着不能很好地分辨图像中不同区域和内容的重要性的问题,导致计算资源分配不合理、检索正确率较低等一系列结果。为了解决这些问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和注意力机制的图像检索方法。首先使用卷积神经网络提取特征,然后使用注意力机制处理提取的特征,可以在计算能力有限的情况下根据图像中的内容合理分配计算资源,使图像中的突出部分得到更多的关注。最后通过融合全局平均池化层处理后的CNN特征来进行图像检索。所提方法在c