论文部分内容阅读
近年来雷达数据的定标已引起广泛关注,雷达数据的反演及分类都直接依赖测量数据的精度,为了提供定量的散射测量值,必须进行外定标.目前常用的定标方法是采用点目标法,但是,采用点目标法定标存在一系列问题.例如,定标用点目标信号与背景比值要足够大,周围地表与定标体间的相干耦合作用也将导致误差.再者,大尺度的定标器制造过程可能出现几何变形.因此,利用分布式目标进行雷达数据定标是一种有效的方法.本次试验是在航天飞机成象雷达(SIR-C/X-SAR)过顶北京试验区时,进行机载合成孔径雷达(SAR)同步飞行试验,同时,地面进行车载散射计实时测量及地表参数实测,简称星—机—地雷达遥感试验。
In recent years, the calibration of radar data has attracted a lot of attention. The inversion and classification of radar data are directly dependent on the accuracy of the measurement data. In order to provide quantitative measurement of scattering, external scaling must be performed. The common calibration method is to use point However, there are a number of problems with the point-target statutory test, for example, the calibration point target signal and the background ratio should be large enough, and the coherence coupling between the surrounding surface and the calibration body will lead to error. Therefore, the calibration of radar data using distributed targets is an effective method.This test is based on the SIR-C / X-SAR imaging system At the same time, the ground-based on-board scatterometer real-time measurement and surface parameters measured, referred to as the satellite - aircraft - ground radar remote sensing test.