论文部分内容阅读
In this paper,two carbon-coated lithium titanate (LTO-C1 and LTO-C2) composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h· g-1,the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g-1,and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g-1 in the voltage range of 1.0-3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the onepot method.