论文部分内容阅读
讨论数论函数方程φ2(N)=S(N16)的可解性,这里φ2(N)为广义Euler函数,S(N)为Smarandache函数。基于广义欧拉函数φ2(N)与Smarandache函数S(N)的性质,利用分段及初等方法,证明该数论函数方程只有N=847、972、1 000、1 029、1 089、1 372、1 500、1 694、2 058、2 178这10个正整数解。