论文部分内容阅读
研究了支持向量、中心距离比值、边界向量以及增量学习之间的关系,提出了基于中心距离比值的增量支持向量机。与传统方法相比,基于中心距离比值的增量支持向量机有效的利用了中心距离比值,解决了CDRM+SVM的阈值选取问题;且适合于增量学习;从而在保证了支持向量机的分类能力没有受到影响的前提下提高了支持向量机的训练速度。