论文部分内容阅读
运用溶胶-凝胶法在Pt/Ti/SiO2/Si基片上旋涂制备了2-2型CoFe2O4/Pb(Zr0.53Ti0.47)O3磁电复合薄膜.制备的磁电薄膜结构为基片/PZT/CFO/PZT*/CFO/PZT,通过改变中间层PZT*溶胶的浓度,改变磁性层间距以及静磁耦合的大小.SEM结果表明,复合薄膜结构致密,呈现出界面清晰平整的多层结构.制备的复合薄膜具有较好的铁电与铁磁性能.实验还研究了静磁耦合对薄膜磁电性能的影响,结果表明,随着复合薄膜磁性层间距的减小,静磁耦合效应的增加,磁电电压系数有逐渐增大的趋势.“,”CoFe204/Pb(Zr0.53Ti0.47)O3 (CFO/PZT) magnetoelectric composite thin films of 2-2 type structure had been prepared onto Pt/Ti/SiO2/Si substrate by a sol-gel process and spin coat- ing technique. The structure of the prepared thin film is substrate/PZT/CFO/PZT/CFO. Two CFO ferromagnetic layers are separated from each other by a thin PZT layer. The upper CFO layer is magnetostatically coupled with the lower CFO layer. Subsequent scan- ning electron microscopy (SEM) investigations show that the prepared thin films exhibit good morphologies and compact structure, and cross-sectional micrographs clearly display a multilayered nanostructure of multilayered thin films. The composite thin films exhibit both good magnetic and ferroelectric properties. The spacing between ferromagnetic layers can be varied by adjusting the thickness of intermediate PZT layer. It is found that the strength of magnetostatic coupling has a great impact on magnetoelectric properties of composite thin films, i.e., the magnetoelectric voltage coefficient of composite thin film tends to increase with the decreasing of pacing between two neighboring CFO ferromagnetic layers as a result of magnetostatic coupling effect.