论文部分内容阅读
The presence of genes encoding organellar proteins in different cellular compartments necessitates a tight coordination of expression by the different genomes of the eukaryotic cell.This coordination of gene expression is achieved by organelle-to-nucleus or retrograde communication.Stress-induced perturbations of the tetrapyrrole pathway trigger large changes in nuclear gene expression in plants.Recently,we identified HSP90 proteins as ligands of the putative plastid signal Mg-ProtolX.In order to investigate whether the interaction between HSP90 and Mg-ProtolX is biologically relevant,we produced transgenic lines with reduced levels of cytosolic HSP90 in wild-type and gun5 backgrounds.Our work reveals that HSP90 proteins respond to the tetrapyrrole-mediated plastid signal to control expression of photosynthesis-associated nuclear genes(PhANG)during the response to oxidative stress.We also show that the hy5 mutant is insensitive to tetrapyrrole accumulation and that Mg-ProtolX,cytosolic HSP90,and HY5 are all part of the same signaling pathway.These findings suggest that a regulatory complex controlling gene expression that includes HSP90 proteins and a transcription factor that is modified by tetrapyrroles in response to changes in the environment is evolutionarily conserved between yeast and plants.