论文部分内容阅读
现场量测获得的围岩变形信息,从宏观上反映了地下洞室围岩-支护系统力学性态变化。为克服人工神经元网络方法过学习问题,提出了一种新的预测地下洞室围岩变形的粒子群支持向量机方法,用粒子群算法优化最小二乘支持向量机的参数,避免了人为选择参数的盲目性,提高了预测模型的训练速度和预测推广能力。利用这种非线性智能预测方法,基于监测数据滚动预测围岩变形,可以及时优化和调整施工步序,保证洞室的稳定性。将该方法用于清江水布垭电站地下厂房的围岩收敛变形预测,获得了令人满意的预测效果。