论文部分内容阅读
为了提高直接甲醇燃料电池(DMFC)的发电性能,采用自适应神经模糊推理技术(FGA-ANFIS)对电池的工作温度进行建模与控制.首先,基于实验的输入输出数据建立了DMFC电堆温度的自适应神经模糊辨识模型,避开TDMFC电堆的内部复杂性.然后,将训练好的网络模型作为DMFC控制系统的参考模型,采用一种改进的模糊遗传算法对神经模糊控制器的参数和模糊规则进行自适应调整.最后,通过仿真,将所提出的算法与非线性PID和传统模糊算法进行比较,结果表明所设计的神经模糊控制器具有较好的性能.