论文部分内容阅读
网络流量的预测具有重大的研究意义,网络流量的预测对于解决网络管理优化、网络拥塞控制这一难题具有重要的指导意义。网络流量的变化受多种因素的综合影响,其变化具有周期性、非线性和随机性等特点。时间序列中的预测模型包括一元线性回归、指数平滑以及能够拟合复杂变化的ARIMA模型,本文通过分析比较ARIMA模型的适用场景以及预测效果,综合评价模型在网络流量预测方面的实用性,着眼于提高网络流量预测的精度。