论文部分内容阅读
针对移动平台上人脸检测实时性不强的问题,提出了一种基于深度学习的FaceYoLo实时人脸检测算法。首先,在YoLov3检测算法的基础上,加入快速消化卷积层(RDCL)缩小输入空间,然后加入多尺度卷积层(MSCL)丰富不同检测尺度的感受野,最后加入中心损失和致密化策略加强模型的泛化能力和鲁棒性。实验结果表明,在GPU上测试时,该算法较YoLov3算法在速度上提高至原来的8倍,每幅图像的处理速度可达0. 002 8 s;精度提高了2. 1个百分点;在Android平台上测试时,该算法较最好的Mobile