论文部分内容阅读
针对水质参数预测过程中样本数据少的特点,结合灰色新陈代谢GM(1,1)模型和BP神经网络模型,提出灰色新陈代谢BP神经网络组合模型。用灰色新陈代谢模型群的数据集作为BP神经网络的学习测试样本,解决了BP网络需要大量样本才能较好地逼近非线性函数的问题。实验表明,与普通BP网络、灰色新陈代谢模型比较,灰色新陈代谢BP神经网络组合模型的预测精度更高,能够应用于水质参数的预测。