【摘 要】
:
针对测试数据自动生成中收敛速度不够快的缺点,提出一种改进的量子遗传算法(IQGA),其对量子遗传算法的主要改进是:1)在个体更新时,对个体的某一位取反,将取反后的个体用于指导下一代个体的进化;2)对测量后的二进制个体进行变异,而不是传统的互换量子比特的概率幅。将IQGA用于测试数据生成,通过对三个基础程序进行实验,结果表明IQGA在覆盖率和迭代次数两个方面都优于传统量子遗传算法。IQGA不仅能保证
【基金项目】
:
国家自然科学基金资助项目(60970032),江苏省自然科学基金资助项目(BK2008124),江苏省“青蓝工程”资助项目.