周慧敏现身理想专业眼镜店开幕式

来源 :中国眼镜科技杂志 | 被引量 : 0次 | 上传用户:qrdao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
据香港媒体报道,周慧敏10月6日受邀出席理想专业眼镜开幕活动,担任剪彩嘉宾,还获老板赠送“永久免费会籍”。周慧敏透露她有深度近视,“因为我小时候常偷偷起床看电视,因为不能被妈妈发现,所以要把电视的音量调至非常小,看的时候我跟电视相距非常近,结果导致患有很深的近视,一只眼800度,另一只500度。之前想过激光矫视,但验眼时才发现视网膜有问题,立刻做了手术修补好视网 According to Hong Kong media reports, Vivian Chow on October 6 invited to attend the opening ceremony of the ideal professional glasses, as a ribbon-cutting guests, but also the boss presented ”permanent free membership “. Vivian Chow revealed that she has deep myopia, ”because when I was a kid, I often stole up to watch TV because I could not find out by my mother. Therefore, I had to adjust the volume of the TV very small. When I was watching, I was very close to the television, Deep myopia, one eye 800 degrees, the other 500 degrees. Previously thought over laser retina, but when the retina was found to have problems, and immediately made a good surgical repair network
其他文献
本文给出了二维Ricci流方程的一个八维李代数  X1=(e)t,X2=(e)x,X3=(e)y,X4=t(e)t+u(e)u,  X5=y(e)x-x(e)y,X6=x(e)x+y(e)y-2u(e)u,  X7=xy(e)x+y2-x2/2(e)y-2yu(e)u,X
目前,大多数企业应用系统都采用面向对象技术与关系数据库相结合的开发方式,这意味着数据需要在对象模型和关系模型间进行转换。这就引出了对象模型和关系模型之间的阻抗不匹配
期刊
本文主要研究Cantor级数∞∑n=1bn/a1…an和Ahmes级数∞∑n=11/an以及级数∞∑n=1bn/an。其中a1,a2,…为大于1的整数,b1,b2,…为任意整数并使得Cantor级数∞∑n=1bn/a1…an和Ahmes
期刊
计算机和以计算机为核心的信息网的出现和发展,使人类开始步入了信息时代,这为人们的生活和工作带来了极大的便利,人们可以通过网络快速传递、及时了解和相互交流信息;然而,科技的
匹配理论是图论中一个重要的基础分支,它不仅对认识图的结构有重要作用,而且也广泛的应用到组合优化,理论化学等研究领域。匹配可扩理论是匹配理论中热门的研究方向,已产生了许多
动力系统解的渐近行为是一个具有丰富内涵的重要概念,主要包括解的存在唯一性、稳定性、振动性及周期性等内容。这些内容揭示了动力系统的长期行为,因此它们在生态学、人口动力
本文主要应用经典李群方法和直接约化法分别研究了(2+1)维Boussinesq方程,(2+1)维高阶Broer-Kaup(HBK)系统,(2+1)维多分量Broer-Kaup(McBK)系统,广义变系数Zakharov-Kuznetsov(v