论文部分内容阅读
赛点精要链接1.凸 n 边形的内角和为(n-2)·180°,外角和为360°.对多边形的问题可将它化为三角形问题来解决.2.平行四边形是一个中心对称图形,运用平行四边形的性质可以证明线段与角相等、直线平行等.3.矩形、菱形和正方形是特殊的平行四边形.(1)矩形中4个内角是直角,可将它转化为直角三角形,要用到直角三角形的若干性质.如:斜边的中线等于斜边的一半;30°角所对的边是斜边的一半,等于斜边一半的直角边所对的
1. The convex n-sided polygon has an internal angle of (n-2) · 180 ° and an external angle of 360 °. The polygon problem can be solved by solving the triangle problem. 2. The parallelogram is a Center symmetrical graphics, the use of parallelogram of the nature of the line can be proved with the same angle, line parallel, etc. 3, rectangular, diamond and square is a special parallelogram. (1) Rectangular 4 corner is a right angle, it can be converted into a right angle Triangle, you want to use a number of properties of a right triangle, such as: the hypotenuse of the midline equal to half the hypotenuse; 30 ° angle of the side is half of the hypotenuse, equal to half the hypotenuse of the right-angle side of the