【摘 要】
:
Recently,a growing number of scientific applica-tions have been migrated into the cloud.To deal with the prob-lems brought by clouds,more and more researchers start to consider multiple optimization goals in workflow scheduling.However,the previous works
【机 构】
:
School of Computer Science and Technology,Shandong University,Jinan 250101,China;Shanghai Police Col
论文部分内容阅读
Recently,a growing number of scientific applica-tions have been migrated into the cloud.To deal with the prob-lems brought by clouds,more and more researchers start to consider multiple optimization goals in workflow scheduling.However,the previous works ignore some details,which are challenging but essential.Most existing multi-objective work-flow scheduling algorithms overlook weight selection,which may result in the quality degradation of solutions.Besides,we find that the famous partial critical path (PCP) strategy,which has been widely used to meet the deadline constraint,can not accurately reflect the situation of each time step.Work-flow scheduling is an NP-hard problem,so self-optimizing al-gorithms are more suitable to solve it.In this paper,the aim is to solve a workflow scheduling problem with a deadline constraint.We design a deadline con-strained scientific workflow scheduling algorithm based on multi-objective reinforcement learning (RL) called DCMORL.DCMORL uses the Chebyshev scalarization function to scalar-ize its Q-values.This method is good at choosing weights for objectives.We propose an improved version of the PCP strat-egy called MPCP.The sub-deadlines in MPCP regularly update during the scheduling phase,so they can accurately reflect the situation of each time step.The optimization objectives in this paper include minimizing the execution cost and energy con-sumption within a given deadline.Finally,we use four scien-tific workflows to compare DCMORL and several representa-tive scheduling algorithms.The results indicate that DCMORL outperforms the above algorithms.As far as we know,it is the first time to apply RL to a deadline constrained workflow scheduling problem.
其他文献
沉管压舱水箱主要通过铺设PVC防水布进行防水密封,具体密封型式以及防水布结构尺寸受沉管及压舱水箱结构影响.深中通道工程沉管为国内首次采用钢壳混凝土组合结构,因此需要研究一种针对钢壳混凝土组合结构沉管的压舱水箱防水密封技术.本文结合深中通道沉管压舱水箱防水密封技术及实际应用对适用于钢壳混凝土组合结构沉管的压舱水箱防水密封型式进行研究说明,其优异的防水效果值得向类似工程推广.
本文结合某海上风电嵌岩桩基础,采用有限元软件ABAQUS分析在极限荷载状态下的嵌岩桩承载特性,对比分析了灌浆混凝土开裂、桩身变形、弯矩及剪力分布情况.结果表明:灌浆层在极限荷载状态下会产生三个破坏区域,灌浆料强度对承载力提升不大,增加灌浆料厚度能显著提高承载能力.
黄骅港真空预压软基处理场地范围内存在已建导标,施工时沿导标承台基础周边布置了一圈水泥搅拌桩进行防护,通过ABQUES软件对水泥搅拌桩的作用进行了分析,结果表明水泥搅拌桩能显著减小真空预压对导标的影响.
以新一代高自动化耙吸挖泥船航浚6009轮为对象,介绍自动化疏浚控制系统在实际施工中的作业原理.针对连云港港30万t级航道二期工程2.1标段工程特点进行典型施工,记录并整理分析施工数据,优化了施工边界控制条件,通过对比“一键式”自动挖泥与人工操耙挖泥的施工效果,认为自动化疏浚控制系统能降低船舶能耗,提高施工效率.
为提升港口工程项目规划建设运营的信息化水平,本文基于BIM+GIS技术,重点研究了三维实景环境下的智慧港口系统架构与系统功能,自主研发了三维实景智慧港口系统,融合BIM与三维GIS模型,实现港口的数字化重构,并在连云港赣榆港区应用,提高了港口的管理效能及信息化水平.
重力式码头工程,尤其是沉箱结构,会涉及到沉箱基槽的开挖和抛填,由此产生的挖填方量对工程经济性影响很大,寻找精确地计算挖填方工程量使纵向设计最优化的方法是工程全寿命周期各个环节的关键[1].另外对于基槽开挖情况较复杂的工程项目,利用传统方法设计基槽挖泥图和基床抛石图也存在极大的困难.本文结合茂名港某液体化工码头工程,总结了传统方法在绘制二维图纸和挖填方工程量计算中存在的问题,对利用Civil3D进行图纸设计和挖填方工程量计算原理及操作流程进行梳理和研究,并与传统方法进行对比分析,验证了Civil3D在图纸设
1 IntroductionrnInspired by natural evolution and biological behavior,re-searchers have developed many successful bio-inspired algo-rithms.Ant colony optimization (ACO) is one of the most suc-cessful bio-inspired computing methods for complex optimiza-tio
随着港口水工结构设计的不断发展,防波堤设计和施工思路也在不断更新,新的设计思路也不断涌现,沙坝防波堤就是一种非常成功的设计施工新理念.本文介绍了一个已基本完工的沙坝防波堤项目的设计和施工情况,通过对原案和代案设计方案的对比,包括工程量对比、主要材料种类及数量对比,再结合当地自然条件、地材供应情况,进行项目的造价对比及工期对比,从理论上,分析出在该项目的特殊条件下沙坝防波堤相对于常规的抛石防波堤有巨大优势.另外,对代案设计的沙坝防波堤的可行性进行了分析,通过沿岸输砂和模型试验的结果从理论上验证了沙坝设计理念
东非某项目现浇箱涵进水口与旧箱涵出水口连接段施工,由于旧箱涵存在大体积胡泊、仍在正常排水,新旧箱涵连接处位于路边、车流量过大、存在旧混凝土底板、钢板桩无法密排施打等难点,通过对上游进水口封堵、车辆改道、利用预埋管道引流等关键工艺形成了新旧箱涵交接处的干作业环境,既保证了旧箱涵的正常排水又解决了旧箱涵排水导致无法进行浇筑的难题,以供类似的施工参考作用.
密封型双列满装圆柱滚子轴承在承受径向载荷的同时也可以承受一定的轴向载荷,且具有密封性能,被广泛应用在起吊设备绳轮上.本文根据密封型双列满装圆柱滚子轴承的结构特点,结合轴承在加工、用户安装及使用时出现的问题,对轴承密封结构、内圈联结方式、用户安装方法等进行了优化改进.并介绍了绳轮轴承配合及游隙的选择.