论文部分内容阅读
提出了一种基于神经网络模型的非线性多步预测控制策略。预测器和控制器由一个BP网络构成。在整个过程中,首先利用一个BP网络构造一个非线性多步预测模型,根据被控对象输出与网络实际输出之间的误差采用改进的BP算法修改网络权值,以逐步建立合理的多步预测模型。然后,根据网络的多步预测输出序列与设定值序列的偏差构造性能指标函数,根据性能指标函数采用自适应变步长梯度法修改控制律。仿真结果表明了该策略的有效性。