论文部分内容阅读
针对已有的遗传BP神经网络土地利用变化预测模型存在BP神经网络隐层节点不易确定、创建过程烦琐等问题,本文利用输入层与隐藏层神经节点数量关系原理确定隐层节点,在Sheffield工具箱环境下进行遗传算法的编程,简化遗传BP神经网络土地利用变化预测模型的创建。结果表明,利用输入层和隐含层节点数量关系创建的遗传BP神经网络土地利用变化预测模型,可以实现土地利用变化的预测,而且在效率和精度上均优于传统BP神经网络模型,且操作简便。