【摘 要】
:
Lattice thermal conductivities of zirconium carbide(ZrCx,x=1,0.75 and 0.5)ceramics with different car-bon vacancy concentrations were calculated using a combination of first-principles calculations and the Debye-Callaway model.The Grüneisen parameters,Deb
【机 构】
:
Department of Materials Science and Engineering,Missouri University of Science and Technology,Rolla,
论文部分内容阅读
Lattice thermal conductivities of zirconium carbide(ZrCx,x=1,0.75 and 0.5)ceramics with different car-bon vacancy concentrations were calculated using a combination of first-principles calculations and the Debye-Callaway model.The Grüneisen parameters,Debye temperatures,and phonon group velocities were deduced from phonon dispersions of ZrCx determined using first-principles calculations.In addi-tion,the effects of average atomic mass,grain size,average atomic volume and Zr isotopes on the lattice thermal conductivities of ZrCx were analyzed using phonon scattering models.The lattice thermal con-ductivity decreased as temperature increased for ZrC,ZrC0.75 and ZrC0.5(Zr2C),and decreased as carbon vacancy concentration increased.Intriguingly,ZrCx can be tailored from a thermal conducting material for ZrC with high lattice thermal conductivity to a thermal insulating material for ZrC0.5 with low lattice thermal conductivity.Thus,it opens a window to tune the thermal properties of ZrCx by controlling the carbon vacancy content.
其他文献
Development of advanced metals materials with ultrahigh strength,large plasticity and high thermosta-bility is one of the most attractive aims for materials researchers.Co-based bulk metallic glasses(BMGs)with the highest strength(up to 6 GPa)and special
High entropy alloys(HEAs)have superior mechanical properties that have enabled them to be used as structural materials in nuclear and aerospace applications.As a dissimilar joint design is required for these applications,we created a dissimilar joint betw
Superhydrophobic coatings are increasingly being evaluated as anticorrosion interventions in exceed-ingly hydrated environments.However,concerns about their long-term durability and amenability to large-area applications in marine environments are still h
The pristine carbon nitride derived from the thermally-induced polymerization of nitrogen-containing precursors(e.g.cyanamide,dicyanamide,melamine and urea)displays low crystallinity because of the predominantly kinetic hindrance.Herein,we reported a modi
Ferrite/carbon composited materials,especially the bio-derived composited materials possessing both environmental friendliness and outstanding microwave absorption performance,attract numerous attentions for solving the“electromagnetic problem”in the Giga
Sodium ion battery(SIB)is considered as the potential alternative for next generation energy system to succeed the lithium ion battery(LIB)due to the low price and vast abundance of Na resource.Ternary metal sulfide is identified as an important redox con
The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃ have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission electron microscopy and atom probe tom
Due to its appropriate bandgap(~2.4 eV)and efficient light absorption,bismuth vanadate(BiVO4)shows promising photocatalysis activity.However,the charge carrier recombination and poorelectron transmis-sion often induce poor photocatalytic performance.Herei
A high-throughput approach based on magnetron co-sputtering of alloy libraries is employed to inves-tigate mechanical properties of crystalline and amorphous alloys in a ternary palladium(Pd)-tungsten(W)-silicon(Si)system with the aim to reveal the differ
In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The single α\"martensite phase was dominated in