论文部分内容阅读
本文略述了计算锥齿轮和准双曲面齿轮应力时,使用柔性矩阵法和有限元法相结合的一般原理。有限元法用来计算齿轮轮齿的刚度,是把刚度作为单位负载沿轮齿齿面法向分布的排列函数处理的。将所得到的轮齿刚度转换为柔性矩阵,并使用现有的矩阵理论,在轮齿齿面接触载荷、齿根弯曲应力和外加齿轮扭矩之间建立直接关系.矩阵理论也考虑到大、小齿轮轮齿之间的失配问题,从而提供了关于建立轮齿齿面几何学与轮齿应力关系的方法。这一研究结果是分析锥齿轮和准双曲面齿轮强度特性的一个非常有用的新方法。
This article outlines the general principles of using the combination of the flexible matrix method and the finite element method for stressing bevel gears and hypoid gears. Finite element method is used to calculate the gear tooth stiffness, is the stiffness as a unit load distribution along the gear tooth normal distribution function processing. The resulting gear tooth stiffness is converted to a flexible matrix using the existing matrix theory to establish a direct relationship between tooth contact load, root bending stress, and applied gear torque The matrix theory also takes into account the large and small The mismatch between gear teeth provides a method of establishing the relationship between gear tooth geometry and gear tooth stress. The result of this study is a very useful new method to analyze the strength characteristics of bevel and hypoid gears.