论文部分内容阅读
首先介绍一种更一般的Mbius变换及其实数形式,接着引入半径为r的球变形为半径为R的球的映射.在该映射下,证明了一偏微分方程在形式上保持不变,这可看作拓广的Laplace方程不变性的证明.此外,将单位球上Poisson核的4个重要性质推广至半径为r的球上.利用拓广的Laplace方程不变性与Poisson核满足拓广的Laplace方程的特性,证明了半径为r的球上的Poisson积分公式在球内适合于拓广的Laplace方程;利用Poisson核的其它特性,证明积分结果满足一极限条件.从而完全求得半径为r的